Up, Up and Away

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

 

By Catherine Bolgar

What’s faster than a ship or train, more eco-friendly than a plane, and doesn’t use roads, rails or ports? Huge airships, which may soon ferry cargo from point to point.

“A state-of-the-art logistics system is always dependent on infrastructure,” says Igor Pasternak, chief executive and founder of Worldwide Aeros Corp., a Montebello, California company developing a cargo airship called the Aeroscraft, which would be bigger than any current plane. “We don’t have a problem with trains; we have a problem with how far and where the rail goes. We don’t have a problem with trucks; we have a problem with enough roads. We don’t have a problem with ships; the problem is ports.”

Airships “will create a new transportation system. Air is the ocean and the port can be anywhere. You can reach any point from any other point. It will be a new way of living,” he says.

The Aeroscraft isn’t like the familiar blimps, although the shape is similar. The exterior is made of a rigid shell of fiberglass and carbon-fiber composite about two millimeters thick, similar to an airplane.

That means that although the Aeroscraft looks like a giant balloon, it wouldn’t fare any worse than a plane in a collision with, say, a bird. “It isn’t sensitive,” Mr. Pasternak says. “You could have a huge hole but you wouldn’t lose helium fast because we don’t keep the helium under pressure. A leak would be slow. As the pressure drops outside, it also drops inside.”

The Aeroscraft cargo models are huge: 169 meters to 280 meters long (555 feet to 920 feet), 54 meters to 108 meters wide (177 feet to 355 feet) and 36 meters to 65 meters tall (120 feet to 215 feet).
photoupdateInside, separate containers, made of high-performance multilayer fabric, hold nonflammable helium. The Aeroscraft operates like a submarine in order to land, Mr. Pasternak says. The pilot compresses the helium to make it heavier than air, and fills the empty space with outside air for ballast.

This technique solves airships’ biggest problem: if you unload 100 tons of cargo, you suddenly have 100 tons of lift, which must be offset with ballast. “It was practically impossible,” Mr. Pasternak says. “It’s why we have no cargo airships, even though they were invented before airplanes.”

Aeros’s technology allows its airship to take off vertically, like a helicopter, or hover for hours over a point on the ground without having to be tied down. The cargo is suspended inside the rigid shell with the helium balloons—and the cargo bay is bigger than any current commercial cargo aircraft. The different airship models can carry payloads ranging from 66 tons to 500 tons.

The Aeroscraft travels at 193 kilometers per hour (120 mph), but could save time, compared with planes, because cargo could be delivered directly to the final destination without having to be unloaded at the airport, then shifted to trucks and driven. “You might see 250-ton airships coming with cargo to a warehouse,” he says.

An airship can stay aloft forever because it doesn’t require energy to stay in the air, he adds. It’s propelled by an electric motor, with the electricity generated by fuel such as hydrogen, natural gas, or diesel. The hydrogen option is “basically like a fuel cell,” Mr. Pasternak says.

We can create transportation means with zero emissions.”

In a feasibility study, the Aeroscraft traveled 12,000 nautical miles (22,224 kilometers) in seven days. “We don’t need anything more than that,” Mr. Pasternak says. At its widest, the Pacific Ocean is 19,000 kilometers; Shanghai to Los Angeles is 10,428 kiliometers.

crew-prep-1Airship operation is similar to that of a ship, rather than a plane: it requires only two people to operate it, and even then the captain just needs to be available and not necessarily in the seat every minute. But a weeklong trip would require a bigger crew than two, so the crew quarters have bedrooms, similar to cabins on a ship.

An airship can ride out bad weather—its size means it is much less subject to turbulence than a plane—but afterward the structure would need to be inspected, Mr. Pasternak says. Alternatively, it can just go around storms rather than through them.

Cargo airships hold potential for defense applications, and Worldwide Aeros has received about $60 million in grants from the U.S. Defense Advanced Research Projects Agency, Mr. Pasternak says.

Airships also could be used to ferry humanitarian aid to areas hit by natural disasters, where transportation infrastructure has been destroyed.

But another application could be commercial, allowing for trade in goods in currently remote locations. “The major problem in development is you don’t have infrastructure,” Mr. Pasternak says. “An airship would allow a factory to go to Africa. You don’t need to build a railroad or a road” to transport the production to market.

The Internet revolutionized the quantity of information available anywhere, compared with libraries that were limited by the number of books they could hold, Mr. Pasternak says. Similarly, the airship will revolutionize distribution by giving anybody anywhere access to a transportation network, he says, adding, “It’s a new way of delivering.”

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe, now working as a freelance writer and editor with WSJ. Custom Studios in EMEA. For more from Catherine Bolgar, along with other industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of Aeroscraft a

Spotlight on Lionel Lambourn of Syntegrate: Looking Beyond BIM to Improve Construction Efficiencies

By Akio
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+
4screen

Admiralty Station, Hong Kong

Lionel Lambourn, director of Syntegrate, first gained familiarity with the possibilities afforded by BIM during his studies at the Southern California Institute of Architecture, before putting those possibilities to use at Gehry Technologies. During his tenure there, he helped set up the company’s Middle Eastern branches, using BIM tools in real-world applications.

Lionel L. Lambourn, Director, Syntegrate

Lionel L. Lambourn, Director, Syntegrate

It was that firsthand exposure to the ways that technology can boost efficiency in the construction process that led Lambourn to launch Syntegrate. The consultancy’s name was coined to describe the company’s focus on “synthesizing disciplines and integrating technologies.”

Why integrated technologies? As Lambourn quite simply explains, construction is a highly integrated discipline. It requires the work and knowledge of multiple disciplines to create something so complicated as a building, but it’s often at the intersection of trades where problems arise.

Today’s advanced software technology can easily be leveraged to ease the coordination required among building professionals and smooth the transitions of trades and materials.

Click to TweetClick to Tweet: “#Construction requires multiple disciplines;
problems arise at intersection of trades”

“In this day and age I see integration of technology as the best way to address some of the accepted, in-built assortments of waste and inefficiency in the construction industry,” Lambourn says. “Our mission at Syntegrate is to leverage technology to realize our built environment more appropriately, more efficiently and more sustainably.”

An Environment of Waste

Waste and inefficiency, Lambourn says, are the single biggest challenges faced today by the architecture, engineering and construction industry.

“I believe waste and inefficiency overwhelm all the other issues and encapsulate all the challenges that we face in the industry,” he says. He offers an example to put this into perspective:

“By some reports, worldwide construction and buildings consume 40 percent of the world’s energy. However, we can conservatively estimate from available data that 20 percent of construction ends up as waste. To make these numbers more tangible, let’s put these numbers in the context of national GDP—worldwide construction is comparable to the size of China’s economy and each year the entire output of Spain is wasted.”

Click to TweetClick to Tweet: 20% of #construction ends up as waste.
How can we do better?

Lambourn sees much of this waste and inefficiency could be solved by better coordination among contractors — a collaboration that could be easily facilitated by the integration of technology such as BIM.

A Tool for Coordination and Visualization

download

Admiralty Station, Hong Kong

Lambourn offers as a case in point Syntegrate’s work on the Admiralty Station, part of the South Island Line (East) Project, which will become the first four line interchange in Hong Kong.

The ongoing underground excavation and building work, which poses its own inherent risks, is being undertaken adjacent to the existing Island Line and Tsuen Wan Line, and the busy existing Admiralty Station – all within a densely populated area with many other underground structures in close proximity.

MTR Corporation, the owner of the project, recognizes the return on investment that they stand to gain from the comprehensive implementation of BIM on their many Projects, from construction through to operation.

The general contractor on the integrated Admiralty Station—a joint venture of Kier, Laing O’Rourke and Kaden (KLKJV)—were early adopters of BIM technology and are certainly at the forefront of the global construction industry in the implementation of BIM on their projects.

For Admiralty, the joint venture has chosen Dassault Systèmes’ 3DEXPERIENCE Platform as their BIM platform. Syntegrate works closely with the joint venture to refine its construction sequencing, from the coordination of excavation to concrete pours to formwork erection. By carefully scheduling each step, the general contractor has been able to execute each phase of this highly complex project with minimal rework, which in turn reduces schedule delays.

Moreover, the solution provides the joint venture with a visualization of the complicated underpinning work required to support the existing rail lines and platforms which remain in operation throughout construction.

Repeated simulations of the onsite work helps the construction team to effectively “practice” and perfect its planning, Lambourn says, so that when workers move onsite they are able to perform their work correctly the first time. This allows the joint venture to realize a dramatic reduction in waste of time and materials.

rebar.junction

Admiralty Station Rebar Junction

Broadening Technology Solutions

As projects become more complex, Lambourn believes that the use of BIM technology is a strong first step toward improving the collaboration of architecture, engineering and construction professionals. And he sees many opportunities to bring other technologies to bear, especially given the pace at which new technological advancements are happening.

“These days, we need to broaden our focus of technology to consider technologies such as 3D laser scanning, 3D printing, and even the use of drone technology to improve the way that a building is delivered,” Lambourn adds.

Click to TweetClick to Tweet: “We need to broaden our focus of
#technology for #AEC”

On the Admiralty contract, KLKJV utilizes 3D laser scanning extensively to capture the as-built conditions of the tunneling works at a level of precision that was not available several years ago and that is unachievable by orthodox survey methods.

“When the laser scan is introduced into the BIM platform, we can determine, exactly, how much over-break (excess excavation) has occurred and where any areas of under-break (insufficient excavation) exist. By repeated laser scanning as they proceed, the joint venture can optimize their works so that they achieve just the right amount of over-break with no areas of under-break, ensuring the highest levels of construction quality.”

Using integrated technology is but one solution to what Lambourn sees as a two-pronged approach to solving construction inefficiency.

Realistically, Lambourn says, “We would be naïve to think that the industry alone could tackle such a large problem of waste and inefficiency. Something like that has to come not only from the industry but also from a governmental level.”

Lambourn suggests that governments may need to step in to reward the reduction of waste and efficiency, ensuring this becomes a market factor that the industry must build into the way it does business.

Case in point: Lambourn notes that the industry still relies heavily on the delivery of 2D, paper drawings for contractual permissions.

“A building could be done completely paperless and much more efficiently through a 3D environment. However, governments need to come to the table and recognize that, and change the way that the legislation around the procurement of buildings is formulated so that there is not a real and contractual reliance on paper drawings.”

That doesn’t mean that architecture, engineering and construction practitioners should sit back and wait for governments to do something, however.

By becoming involved with organizations promoting and standardizing the use of BIM, the industry can help determine future technology requirements. Lambourn expects governments initiatives will spread more widely.

For example, the UK government has committed to what they call a “Level 2” BIM implementation by the year 2016 and several months ago, the strategic plan for “Level 3” BIM implementation was released under the title of “Digital Built Britain.”

Click to TweetClick to Tweet: Lionel Lambourn of Syntegrate:
Looking Beyond #BIM to Improve #Construction Efficiencies

Related Resources

Syntegrate website

Collaborative, Industrialized Construction from Dassault Systèmes

Realistic Simulation Supports Expansion of the London Underground

By Akio
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

Dubbed “one of the most complex tunneling projects in the U.K.,” the Bond Street Station Upgrade (BSSU) project is being carried out to satisfy growing traffic demands within London’s busiest shopping district, the West End.

Upon its completion, Bond Street Station’s daily passenger numbers are expected to rise from 155,000 to 225,000.

A project this complex in nature has to consider the existing tunnel infrastructure, as well as the stress and strains imposed by the surrounding soil layers for the development of new tunnels.

Dr. Sauer and Partners was contracted to provide such tunneling expertise. The company took on responsibility for preliminary-to-detailed design and construction on all BSSU sprayed concrete lined (SCL) tunnels.

Tweet: The Bond Street Station Upgrade utilized realistic #simulation to test preliminary tunnel designs. @Dassault3DS #AEC http://ctt.ec/X4UWh+Click to tweet: “The Bond Street Station Upgrade utilized
realistic #simulation to test preliminary tunnel designs.”

 

Using FEA simulation, they were able to virtually test the ground through which the tunnels are being dug alongside the existing tunnel structures.

Model1.000

This realistic assessment enabled them to improve upon the preliminary design, as well as bring greater confidence to the overall approval process.

To learn more, read the case study, “Tunnel Vision” to see how realistic simulation plays an important role in tunnel excavation.

We also encourage you to download the whitepaper by Ali Nasekhian, Sr. Tunnel/Geotechnical engineer at Dr. Sauer and Partners, which highlights the merits and shortcomings of large 3D models in tunneling.

Tweet: Realistic #Simulation Supports Expansion of the #LondonUnderground @Dassault3DS @3DSAEC #AEC #BIM http://ctt.ec/dU4NO+

Click to tweet this article.

 


Related resources:

White Paper: “Mega 3D-FE Models in Tunneling Bond Street Station Upgrade Project”

Case Study: “Tunnel Vision”

Collaborative and Industrialized Construction Solutions

SIMULIA Solutions page



Page 1 of 512345