Designing Solutions for a Less Wasteful Life

By Catherine

Written by Catherine Bolgar

Lego bricksThe future of design looks a lot like Legos.

Modular design allows a product to be assembled from easily replaceable or interchangeable parts. Most people are familiar with it in architecture and furniture. However, it’s also being applied to other things, from nuclear-power plants to shoes, submarines and guitars.

Modular design is gaining traction thanks to the convergence of several trends. Mass customization is pushing industries—from consumer products and electronics to automobiles—to find ways to deliver customized solutions without sacrificing economies of scale. Tighter environmental regulations are prompting companies to find ways to reduce waste caused by their products. And consumers, fed up with a throwaway society, are looking for products that manage to last yet which can be upgraded as needed.

Take mobile phones: the U.S. Environmental Protection Agency estimates that Americans disposed of 129 million mobile devices in 2009 and sent 11.7 million for recycling.

I was thinking about stuff and why we throw it away,” says Dave Hakkens, who invented Phonebloks, a modular design for a mobile phone. “All our electronics are disposable. If a bike has a flat [tire] you fix it, you don’t throw it away. But if a phone part is broken, you have to throw [the phone] away.”

old cellphonesIn wanting to reduce electronic waste, Mr. Hakkens considered several alternatives. “Should I make a phone that could last 100 years?” he asks. “I like technology and the way it evolves and can improve our lives. If I make a phone that lasts 100 years, I won’t be able to upgrade it. But if it has modules that I can upgrade, I can throw away only a little part.”

Unbeknown to Mr. Hakkens, Motorola Mobility had been working on a modular mobile phone as well, called Project Ara. Google, which acquired Motorola in 2011, is expected to unveil its prototype of Project Ara next year. The goal: a phone that can be customized and upgraded at will.

Mr. Hakkens, who came up with the idea of Phonebloks as a graduation project from the Dutch Design Academy in Eindhoven, the Netherlands, has linked up with Project Ara.

It’s hard to make a phone and it’s a tough world—you need patents, lawyers, you have to compete with big companies,” he says. “I don’t want to build a phone myself. I don’t want to start a phone company. I want to push industry to start a new way to make phones.”

Phonebloks

Mobile phones might be just the beginning. “The Phonebloks concept could be extended to all electronic devices: cameras, TVs, computers,” he says. “You could have building-blocks for electronics, with components that can be exchanged among them and can be upgraded.”

In such a world, it’s possible that new entrants would design the ultimate camera module, while others would specialize in the smallest, lightest battery, and still others would focus on packing more capacity into the memory module. Just as now, you can buy specialized software to meet your needs: in the future, you may be able to buy pieces of a phone to put together the mobile device best suited to your uses.

While some companies choose modular design for competitive advantage, others might find themselves pushed in that direction by environmental-protection laws. The Consultative Commission on Industrial Change (CCMI) for the European Economic and Social Committee of the European Union is working on ways to stop planned obsolescence.

For example, a decade ago the EU banned chips in printer cartridges that signaled the cartridges were empty when they still contained ink. Now it’s taking aim at things like batteries in phones that are impossible for people to replace themselves—and which are so expensive to have fixed by the manufacturer that most people just buy a new phone instead.

“We’ll have less waste,” says Jean-Pierre Haber, delegate of the CCMI consultative committee. “We now create 500 tons of waste per person per year.”

The CCMI proposes five requirements for consumer goods:

  • a minimum two-year guarantee
  • replacement parts available for at least five years
  • certification on the nature and life cycle of all products, no matter their country of origin
  • manufacturer-trained repair shops, which could generate 450,000 jobs in Europe
  • an orientation toward an economy of functionality, so that rather than buying a product, you buy a service, and companies would see incentives in designing goods that don’t break.

Overall, the thrust is to promote the design of goods that can be repaired or upgraded, rather than requiring purchase of a completely new item.

The online community iFixit, which encourages repair over replacement, suggests design features such as product cases that are easy to open, or that have doors to allow access to the inner workings; making the most breakable parts the easiest to access; making some internal components standardized and replaceable by commodity parts; making repair instructions free and publicly available.

We need lots of innovation,” Mr. Haber says. “But we need innovation that gives added value for the consumer and that doesn’t create problems for the environment.”

We need innovation that gives added value for the consumer and that doesn’t create problems for the environment Tweet: “We need innovation that gives added value for the consumer and that doesn’t create problems for the environment”

For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.

Learning from Nature Fuels Aerospace Innovation

By Catherine

Written by Catherine Bolgar

Imagine a trans-Atlantic flight in the future: you’re sitting on seats whose fabrics resist dirt, the way lotus flowers remain clean and dry in a wet and dirty environment. The plane’s exterior is covered with tiny ridges, like sharkskin, which reduce drag. The plane is part of a scheduled V-formation, which saves fuel.

Icarus donned man-made wings in Greek mythology. Leonardo DaVinci drew flying machines. “In the 21st century, we’re not just trying to emulate bird-flight, but trying to understand how birds are so successful,” says Norman Wood, an expert on aerodynamics and flow control at Airbus.

Flying bee

Imitating nature has a name: biomimicry. It has three aspects, Dr. Wood explains.

First is nature as a mentor. We observe how living things succeed and understand what they’re doing. “It’s the art of the possible,” Dr. Wood says. “If we want aerospace vehicles to improve, we can say, ‘Insects can do it—so why can’t we?’”

Second is nature as a model. “We can ask, ‘How do insects fly—and can we transfer their approach into aerospace vehicles?” he says.

Third is nature as a measure. Simple calculations show that bees shouldn’t be able to fly and yet they are extremely successful. “Using the techniques bees use to achieve flight, we can measure how successful we could be ultimately—and how much further we could take a technology if we were to be as efficient as nature,” Dr. Wood says.

Nature by definition is successful,” he says. “So it’s an extremely good benchmark. We’re now moving into a deeper investigation, known as biomimicry, understanding the details of what nature can achieve and using that to fuel our innovation.”

Nature by definition is successful Tweet: “Nature by definition is successful” – @Airbus learns from nature to fuel innovation: http://ctt.ec/f425O+ via @Dassault3DS #biomimicry”

Take sharkskin, which is covered with rough, dermal denticles (hard, tooth-like scales) that decrease drag. Transferring that technology on to aircraft would cut fuel-consumption and thus reduce emissions.

Shark skin

Airbus has developed an aerospace surface with “riblets” that resemble shark skin.

Small patches of sharkskin-like material are currently undergoing tests on Airbus aircraft in commercial service in Europe, to see how it stands up to rain, hail, cleaning, ground contamination and other challenges.

Birds are an obvious model for aerospace biomimicry. Hawks survive thanks to their ability to execute extreme maneuvers in woodlands, or over cliffs, in order to catch their prey. They do it by maneuvering at or very near to their “maximum lift” condition. For aircraft, maximum lift is the point at which they can no longer stay in straight and level flight and stall, experiencing a sudden decline in lift.

Hawk

Pilots, aircraft owners and makers are legally required to maintain a safety margin from that condition occurring.

Many birds fly near maximum lift by using feathers on the top of their wings to detect when the airflow over the wings reaches that condition. The bird has evolved a nervous system that enables it to quickly modify its wing shape to manage the flow near maximum lift to maintain safe flight and maximum performance.

Airbus is looking at how to use surfaces on the wing to replicate the control demonstrated by birds.

Can we react quickly enough to define how we can make small changes to the wing and not go beyond a safe condition?” says Dr. Wood. “Our aspiration would be that we create an aircraft in the future that has its own nervous system. A bird doesn’t think, ‘oh, I’m at maximum lift and I have to do this.’ It makes the change automatically.”

The result could allow lower approach and takeoff speeds, as well as lighter wings, saving weight and therefore fuel.

Not all biomimicry involves new technology. Migrating birds fly in V-shaped formations partly because birds behind the leader can save a lot of energy, by flying in its wake.

Geese in flight

Transferring that to aerospace was assumed to require that aircraft fly close together, presenting traffic control, piloting and safety concerns. However, “as we get more understanding as to how and why birds do it, we find that the flapping of their wings destabilizes the wake behind them. So they have to fly close together to gain benefit.”

Aircraft get thrust from engines, not from flapping their wings, so the wake is not so chaotic. “We have the luxury of having fixed-wing aircraft, a structure that allows the benefit to persist, sometimes for many miles downstream, to trailing aircraft,” he says.

NASA recently demonstrated a 5% to 10% fuel saving by flying aircraft in formation up to a kilometer apart. Such a gap eliminates many of the issues of having commercial aircraft flying close together.

Over 400 commercial flights cross the North Atlantic in each direction every day. If even half were arranged into formations, “the impact on fuel-burn on those routes could be significant,” Dr. Wood says. “With no change to aircraft, we can achieve fuel savings. It’s one example where we can potentially exceed the benefits produced by nature.”

For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.

How can technology shape the future?

By Alyssa

How can technology shape the future? That is the question at the heart of a new3-part series developed by Dassault Systèmes. While the stories are distinct, they contain an underlying theme of how innovative 3DEXPERIENCEs can impact humankind. In the next few weeks we will introduce you to each story in depth.

The Living Heart Project

You will learn about how 3D modeling is giving researchers a revolutionary and comprehensive look into the human heart. Can this help reduce the impact of cardiovascular disease as a leading cause of death in humans? Will our medical treatment be able to become more personalized to our unique situation?

Living Heart

Performance Sports Apparel

Another segment focuses on advances in performance sports apparel. Will we soon expect that every piece of our athletic gear will be easily customized to improve performance and comfort? Will this create a world where blisters from running will be a thing of the past?

Sports apparel

Sustainable Cities

In the final segment, you’ll get a glimpse into the direction that urban planners are quickly moving to in order to quickly and sustainably develop cities to meet the needs of rising populations while keeping in mind the impact on the population and the environment.

Sustainable cities

Through the end of July, we will reveal each of these stories to you through videos, infographics and news articles.

For now, we invite you to let your imagination take flight by giving 60 seconds to view our new commercial that gives a glimpse into Dassault Systèmes vision for the future and how 3DEXPERIENCES can shape our lives. Watching TV? Look for the spot through July 31st on BBC World News!

YouTube Preview Image


Page 1 of 41234
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.