#IFWE Challenge prizewinner to pitch at GreenBiz #VERGECon

By Aurelien

Milos Milisavljevic

Milos Milisavljevic, co-founder and CEO of Strawberry Energy, and prizewinner of the #IFWE Challenge will be pitching today at VERGE Conference in San Francisco, an international event “where tech meets sustainability” organised by our partner GreenBiz.

Indeed, not only Milos will be attending the conference (as part of his perks for winning the 2nd prize of the #IFWE Challenge), but he has been selected among tens of other candidates to pitch about his projects in front of a large audience of sustainability professionals, media, and investors.

See his application pitch below:

As a matter of fact, Milos is already used to such exercise as he brilliantly spoke at the New Cities Summit 2014 event (organized by our partner New Cities Foundation). Watch his presentation below: YouTube Preview Image But for now, let’s wish best of luck to Milos’ pitch today, between 10:05 and 10:30 (San Francisco time)! If you’re not physically attending VERGE Conference, you can still attend VERGE Virtual Event by registering for free.

Strawberry Energy

The future is still plastics; maybe more than ever

By Catherine

In the 1967 movie “The Graduate,” the title character got this career advice: just one word…plastics.

It was so long ago, yet a futuristic remake would give the same advice. Plastic keeps evolving, gaining new properties and new uses.

The era of ‘The Graduate’ was a miracle age for plastic,” says Steven Russell, vice president of plastics for the American Chemistry Council. “Where we are in material sciences is another age in breakthroughs.”

Those high-tech composite materials you hear about are plastic reinforced with carbon fiber to combine the benefits of plastics—light weight—with dramatically increased strength.

Count on finding more plastic in vehicles. “Materials that used to be only for race car drivers are going to show up in everybody’s garage,” Mr. Russell says.

Plastics will be a major contributor toward meeting higher fuel economy standards and thus reducing pollution by making cars lighter. Plastics already make up about half of a car’s volume but account for only 10% of its weight.

Imagine if, a few hours after a fender bender, your car has healed itself. Scott R. White, professor of aerospace engineering at the University of Illinois at Urbana-Champaign, recently published research on the first demonstration of a synthetic, nonliving material—plastic—that is able to regrow and regenerate in response to damage.

Damaged bumper

In the future, plastics would never age because in response to either small-scale or large-scale damage, they would regenerate themselves,” he says. The process doesn’t work if the plastic has exploded or broken to bits.

Regenerating plastic has a vascular system in which about eight different chemical compounds circulate in two isolated networks, similar to blood circulating through the body—in fact, the idea was based on mimicking the body’s healing process.

When damage occurs, those veins break, allowing the two fluid streams to mingle and triggering chemical reactions that lead to regeneration. One reaction creates a gel, so the fluids no longer flow. A slower reaction is hardening, which turns the gel material into a structural plastic, Dr. White says.

The system isn’t expensive, he adds, and the chemicals are not more expensive than plastic itself.

Plastic has advantages over metal including being lighter and resistant to corrosion. The downside of plastic has been that it weakens over its lifetime, and may eventually fail. Ultraviolet rays, for example, can dramatically weaken plastic over time, making it become brittle and flake, Dr. White says. That’s something metals don’t suffer.

With regeneration, “plastic could be immortal as long as you maintain the mechanism by which it regenerates,” he says. The breakthrough would make plastic greener, because “every time you can make something last longer, it means you aren’t throwing it away or replacing it.”

Plastic already has been getting greener, says Mr. Russell of the American Chemistry Council. It’s now possible to recycle more kinds of plastics that weren’t recyclable in the past, from yogurt containers to flexible film like shopping bags.

Plastic also offers green applications in many industries. If all building construction materials now used were plastic—vinyl instead of glass windows, plastic instead of metal pipes, foam insulation—it would save enough energy to power 4.6 million U.S. homes, he says. Plastic is being used in energy-efficient LED light bulbs, which may help bring down their cost.

plastic polymer granules

Stanford University is working on ways to use plastic to improve the ability of solar cells to absorb energy. Bayer MaterialScience, a unit of Germany’s Bayer AG, and Belgium’s Solvay Group are making plastic materials for the Solar Impulse 2 ultralight plane, which aims to fly around the world powered only by solar energy next year. The lithium polymer batteries—made partly of plastic—store enough energy that the plane has been able to fly part of the night in test flights.

If we think about sustainability, lot of people don’t think about plastics,” Mr. Russell says. “But if we think about how a material impacts how we use water or energy or reduce greenhouse gas emissions, plastics help.”

Packaging is a major application for plastics, and one in which the material can make products greener. A little bit of plastic can prevent a lot of food contamination and waste. With active packaging, the wrapper itself helps prevent spoilage. Some are impregnated with antimicrobials, while others prevent loss of bacteria that’s beneficial to our microbiome. Still others include strips that absorb ethylene—which is given off by ripening fruit and vegetables—to keep food fresh longer.

Intelligent packaging may one day communicate information about the food in their refrigerators to consumers, to say which foods are in danger of not being fresh any longer, so those can be eaten first.

Plastic is showing up in some other unusual places. The Bank of England announced last December that the next £5 and £10 banknotes will be printed on a plastic film, rather than the traditional cotton paper. The switch, which will begin in 2016, will make banknotes cleaner, more durable and more difficult to counterfeit.

Plastic is a key component in the explosion in 3-D printing, which promises to change many industries. While 3-D printing has been around for three decades, it has only recently taken off, with applications from medicine to spare and custom parts to molds, patterns and models.

Think you have what it takes to shape the future?

By Alyssa

If you have been following this blog for the past 6 years, or if you’ve just found us – you will know that we at Dassault Systemes are driven by a goal to help people imagine sustainable innovations capable of harmonizing product (the economy), nature (the environment) and life (the people). We believe that “if we ask the right questions, we can change the world.”  We are passionate about helping leaders in a range of industries around the world create innovative ways to advance and optimize our path to the future.

To support our mission, we are excited to announce that we have formed a new community on LinkedIn called Future Realities.  You won’t hear a lot directly from us there. Instead, we created this as a space for anyone interested in kicking around ideas around future trends and technology to come together.  You’ll find posts now from thought leaders from The Economist and the Wall Street Journal, and every day community members are raising their own questions to learn what others out there think.

We would love for you to join us! Share your own questions, or jump into one of the compelling discussion topics already raising interesting points, such as:

Join the Future Realities Discussion



Page 1 of 1612345...10...Last »
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.