Greening the Link Between Land and Sea

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

Cargo Ship APL TOURMALINE arriving at the Port of Oakland
By Catherine Bolgar

With container-port traffic having more than tripled since 2000, and today’s world container trade expected to double by 2024, ports have become important industrial centers, as well as flashpoints for environmental concerns. Regulations and technology are combining to help ports be greener.

When a port invests in green technology, it is not only good for the environment but also good for themselves, because it can make unit operating costs go down in the long run,” says Vinh Thai, senior lecturer at the School of Business IT and Logistics at Royal Melbourne Institute of Technology in Australia.

As the link between land and sea, ports affect not just terrestrial and marine habitats, but also such environmental aspects as air quality and noise, especially for the often-large cities next to them.

“During the loading and unloading of petroleum products, a release can occur with consequent damage to the ecosystem,” says Rosa Mari Darbra, associate professor of chemical and industrial engineering at Polytechnic University of Catalonia in Barcelona. “The noise of the port, which works 24 hours every day, may generate disturbance and even anxiety to the surrounding population. The storage of solid bulk, such as coal, can generate particles. If they are not properly protected, they may affect the respiratory systems of citizens, especially children and old people.”

The International Maritime Organization adopted the International Convention for the Prevention of Pollution from Ships, or Marpol, in 1973. It aims to prevent, among other things, fuel spills with design measures such as double hulls, and prohibits dumping sewage near land. It also requires ports to be able to accept waste from ships and either recycle or treat it appropriately on land, either at the port itself or elsewhere.

In order to facilitate ships’ delivery of waste at port, Spain in 2010 established a flat rate for waste-handling, Dr. Darbra says. Even if this measure has increased work for ports, the aim is to encourage ships to be greener.

Cargo shipAir pollution has been tamed around ports in the North Sea, Baltic Sea and North America by requiring ships to switch to low-sulfur fuel when entering designated coastal areas. Some ports, such as Rotterdam, offer discounted fees to ships that can show low emissions, Dr. Thai says.

Similarly, Hong Kong and Singapore reduce port fees for vessels that switch to cleaner fuel while at berth. Nine of the world’s top 10 busiest ports are in Asia, and the ports with the highest emission levels from shipping also are in Asia: Singapore, Hong Kong, Tianjin, China, and Port Klang, Malaysia.

Ports also are cutting emissions by encouraging ships to shut down their engines while at berth and switch to onshore power systems. These power generators usually burn fuel that’s cleaner than the bunker fuel used by ships. However, the challenges are providing enough power and connectivity. “Sometimes the electrical plugs and sockets aren’t the same between countries—the voltage isn’t the same,” Dr. Thai says.

Similarly, ports can switch to cargo-handling equipment such as cranes that run on electricity instead of diesel, he adds. Even warehouses can be greener if designed to use natural light instead of electricity whenever possible.

Greater efficiency does reduce harmful emissions. “In high-traffic ports, the congestion from vessels idling for long periods of time significantly increases pollution levels. This is responsible for excessive pollution, producing greater greenhouse-gas effects when productivity does not increase equally with efficiency. It’s a vicious circle,” says Jaime Ortiz, vice provost for global strategies and studies at the University of Houston. “Economically it’s not good either, as pollution shortens the lifespans of the vessels, the cargo on board and the people working on the ships.”

forklift handling container box loading to freight trainThe design of land transportation also affects ports’ sustainability. The use of trucks to transport the cargo from the port to the hinterland involves highway congestion and pollution, Dr. Darbra says. If a maximum amount of cargo were shifted to rail, it would bring important reductions in pollution. Two other competitive solutions are short sea shipping and inland waterways.

“These three measures could improve the environmental sustainability of seaports a lot,” Dr. Darbra says. “They could help decongest traffic at seaports.”

Inland vessels have less capacity than ocean-going ships, but can carry far more cargo than trucks. Goods could travel with less pollution by inland waterways to logistical centers closer to their destination, before being shifted to trucks for just the last, short leg. Inland waterways “give more power to the logistic chain,” Dr. Darbra says.

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe, now working as a freelance writer and editor with WSJ. Custom Studios in EMEA. For more from Catherine Bolgar, along with other industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of iStock

Robot Miners of the Deep

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

By Catherine Bolgar

A combination of technological advances, from such unrelated fields as smartphones, sensors and robotics, is pushing deep-sea mining closer to reality.

The sea floor is particularly rich with precious metals—more so than land deposits. Seawater seeps through cracks in the volcanic rock on the ocean floor along the edges of the Earth’s tectonic plates. Underground, the water is heated by the nearby magma. It dissolves the metals in the rocks then is spewn out through hydrothermal vents in a liquid “smoke” of fine mineral particles. The particles react with the cold sea water and settle to the ocean floor, creating deposits, called seafloor massive sulfides, that can be 10 to 20 times higher grade in minerals than those on land.

The ocean floor also has iron-manganese nodules, which can also contain copper, nickel and cobalt, and cobalt-rich crusts. The main metals sought in deep-sea mining are copper, gold, nickel and cobalt.

The main hurdles to mining these deposits have been technological. “There’s no wifi, no cellular service,” says Justin Manley, president of Just Innovation, a Boston undersea technology and robotics-consulting firm. Sound waves travel much more slowly underwater than through air, “so you can’t get the same kind of bandwidth” for communicating with the robots, he says. Equipment needs protection from the corrosive saltwater; the cold, which can decrease batteries’ power; and the pressure, which increases by one atmosphere for every 10 meters of depth, he says.

“People can’t dive to 1,600 meters,” says Mike Johnson, chief executive of Nautilus Minerals Inc., a Toronto-based company that’s the first commercial enterprise to develop a seafloor production system for deep-sea mining of massive sulfide systems. Nautilus was granted a mining lease in 2011 by Papua New Guinea for an area called Solwara 1 in the Bismarck Sea in the southwestern Pacific Ocean. Mining hasn’t yet begun, as parts of the seafloor production system aren’t yet completed.

Now we can do everything robotically,” he says. “In the short time we’ve been going seriously, about 10 years, I’ve seen huge changes in the quality of the technology, particularly things like mapping. A lot of the technology for sonar is developed in the military then declassified and put on the market. Similarly, there have been huge advances with battery tech and computing power.”

ConstructionA standout technology for Nautilus is a heave-compensated crane. The crane is on the ship to lower machinery into the water. This crane can hold the machinery exactly, say, 10 meters off the sea floor in order to stabilize it during precision work.

“Computers on the crane talk to computers on the boat,” Mr. Johnson explains. “They figure out where the hook of the crane is in 3D space. As sea swells come through, the crane takes in and lets out wire to make sure the hook stays in the exact position relative to the sea floor. It’s amazing to see. The hook hardly moves—we can watch it on video—even though the boat goes up and down all the time.”

A special ship is being built for Nautilus for the operation. It will have a moon pool, or a hole in the middle. The equipment, such as the pump and riser system, descends through the hole so the vessel sits directly above the pump. The vessel has to stay in place on a moving sea—called dynamic positioning. The ship’s computers talk to satellites to engage the propeller systems so the vessel doesn’t move more than two meters from a point on the sea floor, he says.

The riser was designed for the oil and gas industry to clear out the cuttings from deep-sea drilling, rather than to let them dissipate on the ocean floor. Deep-sea mining won’t dig below the surface, but will remove mineral-rich formations on the sea floor. A large central pipe will ferry slurry with the mineral cuttings up to the vessel, while two smaller pipes on the sides will send the seawater back down.

The seawater is filtered to four microns, or about a quarter of the thickness of a hair, “so we don’t return much,” Mr. Johnson says. And, on the advice of marine scientists, the water isn’t simply dumped overboard because the pH and temperature of water at 1,600 meters has a different pH level and is far colder—about 2.6 degrees Celsius—than the 30-degree Celsius surface water.

Different kinds of robots do the work. Autonomous underwater vehicles, or AUVs—torpedo-shaped robots loaded with sensors—go back and forth over a selected area, like mowing a lawn, to detect changes in the water’s chemistry (temperature, pH, turbidity) that can signal the presence of mineral deposits, says Mr. Manley of Just Innovation.

AUVs, which also are called unmanned undersea vehicles or UUVs, can be specialized to gather images from an area of interest, to create detailed maps.

Then the work is turned over to remotely operated vehicles, or ROVs, which remain tethered to the ship by a thick cord carrying electrical and fiber-optic cables. An operator on the ship, who watches the action via television screens, directs the ROVs. One kind of ROV, about the size of a small car, collects samples. The actual seafloor production tools that cut and collect the rock are massive—about 14 meters high and 16 meters long and weighing 300 tons, Mr. Johnson says. Because ROVs get electricity from the ship, they can stay underwater longer than the 18 hours of battery-operated AUVs.

With regulation and monitoring to ensure it’s done correctly, undersea mining could have a much smaller environmental impact than mining on land, Mr. Johnson says. The higher grade of mineralization and its concentration means less area is affected. The process has no tailings, because even the iron pyrite around the precious metals gets used. It doesn’t affect fresh water or human habitats.

“It’s why I like this project,” he adds.

It will have such a small footprint, compared to a mine on land. To stop a rush to the bottom we need good regulations and the system needs to be transparent.”

Perhaps technology will be the answer. Some underwater and surface robots are being developed that could stay in place for a year, Mr. Manley says, potentially offering a way for regulators to monitor mining sites remotely.

 

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe, now working as a freelance writer and editor with WSJ. Custom Studios in EMEA. For more from Catherine Bolgar, along with other industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of iStock

‘My Design’ webinar: how a typical furniture company turns ideas into reality?

By Lauriane
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

Do you want to develop innovative and successful products?

Do you need to improve efficiencies and make the right decisions while reducing development time and costs? 

Dassault Systèmes has developed “My Design”, an integrated solution that expands your growth and helps increase your margin, making sure you develop a successful product that your consumers will love.

Click here to discover how a typical furniture company has rapidly developed a new office chair, with an integrated approach, from ideation to market launch. Imagine that all internal and external players can easily collaborate together.

vlcsnap-2016-06-02-14h27m28s510

Marketing and Innovation

What if marketing and innovative departments could keep abreast of market needs by managing the free flow of ideas and providing multimedia dashboards?

With a few clicks, the Marketing Manager can easily consult design trends and blogs and monitor project status, all in real-time. Together with her colleagues, she can perform a detailed review of key trends, challenges and consumer expectations. With this visual information, managers can assign maturity levels bumping them up from proposal status, to concept through to validation.

2016-08-22_17-39-53

Creative Design

What if industrial designers and stylists used powerful and intuitive tools that allowed them to focus on innovation?

With CATIA, industrial designers can create freeform 3D sketches. It’s fast and easy to use allowing the user to explore more design scenarios in a short amount of time. He can transform ideas into a 3D reality while exploring detail design variations directly on 3D objects. Sketching combined with the intuitive act of painting demonstrates the power of realistic 3D modeling. Using subdivision-surface technology, the industrial designer can very quickly sculpt in 3D, while keeping surface curvature continuity under control.

2016-08-22_17-41-19

Decision Review

What if you could improve efficiencies and make the right decisions while reducing development time?

It’s time for important decisions to be made during a design-review session with the product manager, the CEO and the marketing manager. To ‘sell’ his ideas, the industrial designer is now using CATIA to present and promote projects with a high-end visualization and rendering solution.

2016-08-22_17-41-32

Concept Development

What if you could reduce development costs by enabling industrial designers and mechanical engineers to work in the same integrated environment?

Mechanical engineers can quickly design Sheet Metal parts by taking capitalized know-how and manufacturing constraints into account early in the design process. The engineer can intuitively manage the forming process directly in 3D and automatically generate flattened views from the 3D design part.

2016-08-22_17-41-46

Simulation and Validation

What if decision makers could harness accurate information to define the best consumer experience and make the right choices?

Integrating simulation in the design workflow improves quality and reduces the cost linked to physical testing. Now that the product is completely defined, all actors and decision makers can easily experience the final product in context and digital assets are ready to be re-used for marketing purposes.

2016-08-22_17-42-06

Conclusion

“My Design” is an integrated solution based on the 3DEXPERIENCE platform for Consumer Goods companies. It allows the free flow of ideas through social innovation and provides multimedia dashboards to keep abreast of market needs. With “My Design”, your company can develop innovative products faster and cheaper and deliver products consumers love.

Discover more

Watch ‘My Design’ Webinar: how to turn ideas into reality

Discover My Design Industry Solution Experience

Watch the video and Listen to Tomasz Bardzik, CTO of Nowy Styl Group

Find more about Dassault Systèmes’ in the Consumer Goods & Retail industry



Page 1 of 2212345...1020...Last »