Energy planning for a world turned on its head

By Catherine

By Catherine Bolgar*

Data centers guzzle it. The coming Internet of Things, with the gadgets and appliances in our homes and workplaces interconnected, depends on it. A shift in our automobiles away from petroleum fuels will vastly multiply our need for it.

Solar Power Panels

Our future is powered by electricity. Demand for electricity by 2050 will increase 127% from 2011 levels, the International Energy Agency predicts, with demand in developing countries booming fourfold.

We love electricity because it’s so nonpolluting at the point of consumption. We don’t have nasty fumes coming from our refrigerators or our computers. But electricity isn’t carbon-free. Emissions from electricity generation rose 75% between 1990 and 2011, the IEA says. Increasing electricity generation to meet future demand requires a 90% cut in emissions in order to limit the rise in global temperature to two degrees Celsius.

That means not only relying more on renewables but also rethinking the entire electricity industry, from generation to distribution.

There is a big revolution occurring in the power industry,” says Martin Green, professor at the Australian Centre for Advanced Photovoltaics at the University of New South Wales in Sydney. “The whole business model has collapsed in a few years.”

Peak prices for electricity, whether in Europe or Australia, used to occur during summer afternoons. In Europe, where nuclear energy is widely used, plants had to trim output just as demand was peaking, because they weren’t allowed to dump the hot water they create into rivers, Dr. Green explains. That exaggerated the gap between supply and demand, and created even higher prices.

In Australia, many utilities were able to make their profits for the whole year thanks to summer peaks, he says, adding, “Everyone was bidding up their prices.”

However, the huge surge in solar panel installations—cumulative installed global capacity rose about 44-fold from 2010 to 2011 , the IEA says—has changed that equation, by producing the most electricity exactly at the times of peak demand: summer afternoons.

Utilities need to find a way to make money from solar. For the unadventurous ones, solar is really bad news. It’s taking away from demand for electricity,” Dr. Green says.

Renewables pose two big challenges for the power industry: They are intermittent and thus require storage or a backup, and they require a different kind of grid.

To ensure that when the wind is calm or the sky is cloudy there’s still enough electricity for peak demand, the system needs extra capacity. Average power demand in Germany, for example, is 80,000 megawatts, and peak demand is 130,000 megawatts, says Eicke Weber, director of the Fraunhofer Institute for Solar Energy Systems in Freiburg, Germany. If 80% of the energy mix is renewables, as Germany intends by 2050, such a system would need 200,000 megawatts of wind power and 200,000 megawatts of solar power—overcapacity is necessary to compensate for the times when it’s calm or dark.

So at off-peak times and on sunny, windy days, Germany would have far more electricity than it needs. “The future will be characterized by times where we have excess electricity,” he says.

One way to take advantage of the surplus is storage. Better storage, in the form of batteries or other means, is advancing. For example, electric cars that charge while parked during the day would be one way to store some solar power. Another way is to use the solar energy to split apart water molecules, releasing the oxygen and keeping the hydrogen for use as fuel.

As for backup power, “natural gas is the absolute complement for renewables,” says Oliver Inderwildi, senior policy fellow at the Smith School of Enterprise and Environment at Oxford University in the U.K. “Gas can be shut off or turned on quickly and can operate at various levels. If it gets cloudy, you can fire up a couple of turbines to make up the shortfall from solar. You can’t do that for coal or nuclear.”

The boom in cheap shale gas in the U.S. is crowding coal out of the energy mix there, he says. Building a gas-fired plant is much faster and cheaper than for coal or nuclear as well. A gas-fired plant can be built in 18 to 36 months, versus about six years for a coal plant.

In much of the world, however, gas is more expensive than coal. India and China are building coal plants to meet electricity needs, but they are locking themselves into a high-carbon infrastructure over the long term, Dr. Inderwildi says. The catch, he adds, is “CO2 is a global problem. It doesn’t matter where it’s emitted.”

The other challenge with renewable energy is distribution. The dispersed nature of renewable sources, such as rooftop solar panels, makes planning difficult.

The grid network is moving away from centralized plants to more distributed generation: wind, solar, biomass and other options,” says Dr. Green. “Some costs and benefits arise from that. You don’t have to have power lines carrying the same density of power. You used to have electricity flowing out from power plants in one direction. Now a lot of electricity is flowing the other way. The grid needs upgrading.”

Solar panels in front of wind turbines and mountains

And since the cost of maintaining and upgrading the grid’s assets is typically bundled into the cost of electricity consumption, people who generate renewable energy – through rooftop solar, say – are using the grid infrastructure for storing their extra solar energy without paying for the grid, which is an unsustainable utility model.

Smart grids use technology to communicate between energy suppliers and users to make the system far more efficient, for example, by allowing consumers to choose to reduce energy use at peak times.

“Smart grids are definitely happening,” he says. “It won’t be overnight, but they are incrementally being implemented.”

*For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.

#IFWE Challenge prizewinner to pitch at GreenBiz #VERGECon

By Aurelien

Milos Milisavljevic

Milos Milisavljevic, co-founder and CEO of Strawberry Energy, and prizewinner of the #IFWE Challenge will be pitching today at VERGE Conference in San Francisco, an international event “where tech meets sustainability” organised by our partner GreenBiz.

Indeed, not only Milos will be attending the conference (as part of his perks for winning the 2nd prize of the #IFWE Challenge), but he has been selected among tens of other candidates to pitch about his projects in front of a large audience of sustainability professionals, media, and investors.

See his application pitch below:

As a matter of fact, Milos is already used to such exercise as he brilliantly spoke at the New Cities Summit 2014 event (organized by our partner New Cities Foundation). Watch his presentation below: YouTube Preview Image But for now, let’s wish best of luck to Milos’ pitch today, between 10:05 and 10:30 (San Francisco time)! If you’re not physically attending VERGE Conference, you can still attend VERGE Virtual Event by registering for free.

Strawberry Energy

Blue Sky Solar Car Follows the Sun Across Australia

By Suzanne

A fleet of cars are racing 3,021 kilometers (1,877 miles) across Australia this week powered by nothing except solar energy. Among them is a car from Blue Sky Solar which was designed using Dassault Systèmes’ 3DEXPERIENCE Platform.

Thirty-eight teams from 22 countries competing in the World Solar Challenge departed Darwin on Sunday the 6th and are expected to arrive in Adelaide Sunday the 13th. Vehicles must be highly efficient to both make the long trek and to make it in the fastest time.

Traditionally building vehicles for the race can be a year’s long process. But the Blue Sky Solar Car team was able to build a vehicle in just 13 months. Paul Park, Managing Director of the University of Toronto Blue Sky Solar Car team, said:

This was the first generation car on which we used the 3DEXPERIENCE Platform. Not only did it help us collaborate better and improve work flow tremendously, it was critical to us being able to design and deliver the vehicle so quickly.

CATIA allowed us to fully integrate the systems in the vehicle and gave us the flexibility to design a world-class aero body while SIMULIA highlighted potential problems early in the design process and helped us avoid over-design.

3DEXPERIENCE design and realistic simulation apps allowed the Blue Sky Solar Car team to work on all their car’s systems under one interface – including mechanical, electrical and aerobody – from the first concept all the way through to manufacturing. The team deployed DELMIA’s Human Builder and virtual manikin applications in order to visualize ergonomics and driver comfort, and even identify and remedy flawed calculations in the design phase. SIMULIA’s advanced simulation technology aided in further validating the design intent – an analysis that had previously been done using only rudimentary hand calculations.

After three days the Blue Sky Solar Car team is in 9th place. You can track the vehicle here.

Watch “See You at the Finish Line”:

YouTube Preview Image

 



Page 1 of 212
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.