CATIA 3DEXPERIENCE, the Winning Partner for the DUT Racing Team

By Thierry

Dutch university students from TU Delft had only nine months to design and build a new version of their electric car that they hoped would once again lead them to victory in the 2014 edition of the Formula Student competition.

The team used design and simulation technology from Dassault Systèmes’  3DEXPERIENCE platform to design the DUT14, an electric car featuring numerous improvements over last year’s model.

Global Design Competition

Every year, some of the world’s brightest engineering students pool their talents to design what they hope will be the winning car in the annual Formula Student competition. It is an opportunity for 500 teams from all over the world to put their skills and imaginations to work during their free time, including evenings, weekends and holidays, for a good portion of the school year. In addition to the challenge, it is a tribute to the engineers who founded this competition over 30 years ago. “This international design competition was the idea of the Society of Automotive Engineers who thought that students graduating from engineering school did not have sufficient practical design experience, nor the right project management and team-working skills,” explained Tim de Morée, team leader, Formula Student team at TU Delft in the Netherlands. “So they designed the Formula Student competition to enable them to acquire all three.” Students must design, build, test and drive a formula-type racing car as well as create an associated business plan for potential investors. Contestants’ entries are judged based on a series of tests that include speed, design, safety, reliability, and cost.

Delft University of Technology is a repeat participant in this competition and winner of numerous Formula Student races in the past.

Tim de Morée is this year’s leader of TU Delft’s 86 students team. Once again the students attempted to outperform the other teams in three key races – Formula Student United Kingdom (FSUK), Formula Student Germany (FSG) and Formula Student Austria (FSA) – with their new and improved DUT14. “You may think that after designing 13 cars that we benefit from our past experiences and know-how,” de Morée said. “This is not entirely true since 80% of the team is new to this competition. The other 20% are the few alumni who participated in this year’s adventure providing us with their design and project management expertise.” As a result, de Morée’s team completely redesigned a vehicle from scratch. The four-wheel drive car has four equal motors that enable the car to accelerate even faster and to regenerate energy on all wheels while braking. “This constant reuse of energy allowed us to choose a much smaller and lighter battery package,” de Morée said.

Engineering Firm.com

The team is run like a small engineering company with students working in one of five departments: electronics, powertrain, vehicle dynamics, chassis and aerodynamics. “Team members are responsible for designing a part, for example the steering system or electrical wire harness. Only the most standard parts such as dampers or sensors were purchased from suppliers but we tried to do as much as we could by ourselves.”

The DUT14 was designed and tested using solutions from the 3DEXPERIENCE platform. Every “department” completed its objectives using the 3DEXPERIENCE solutions. For example, students used CATIA for their design work and the analysis and simulation solution SIMULIA to test their design concepts. “This was very beneficial due to our tight schedule and limited resources,” Marinus van des Meijs, chief engineer, said. “We had only nine months to complete the project, of which three were dedicated to design.”

Lighter, More Energy Efficient

One of the team’s objectives this year was to make the car lighter than last year. “With a lighter car we improve energy efficiency and performance when accelerating or braking,” van des Meijs explained. “The DUT14 weighed 155 kg, down from last year’s model, which weighed an already light 179 kg. We owe this success in part to the 3DEXPERIENCE platform and its integrated simulation solutions, which enabled us to test each design iteration with amazing speed and precision. “All five departments of our company shared the same designs so when one group made changes, the others saw the updated design in real-time,” van des Meijs said. “Moreover, design history was capitalized, which allowed us to go back to previous design versions if needed at the push of a button.

Most of all, potential design problems were detected early on and not when we were physically assembling the car, which would have hurt our timing.”

Also new this year were the tires for the DUT14. “We designed them ourselves this time and made them wider, with a smaller outer radius and lighter than last year,” van des Meijs said. “We believed it would improve performance. Here again, without the 3DEXPERIENCE platform we would not have been able to test if our design caused interferences when steering. We were able to look at 55 different design iterations with CATIA before finding the right configuration.

The electrical department used the CATIA Electrical solution to define the wire layout, splice positions and wire lengths. “CATIA helped us to position our wiring in the most efficient way while keeping total mass on par with last year’s model,” van des Meijs said. “It is also important to allow slack where the connectors are and not in the rest of the wire harness. CATIA helped us place them exactly where we wanted. One key value of CATIA Electrical is its ability to quickly produce a precise design for routing. We used the Flattening feature to create the wiring drawings at a scale of 1:1. This made it easier to visualize every detail, which was very helpful,” he said.

CATIA, a Winning Partner

The Society of Automotive Engineers would have been proud to see how the design competition they imagined provides participants with valuable engineering skills. The TU Delft team put these skills to good use winning the championship title at the Silverstone competition and receiving numerous awards at the Hockenheim race in Germany including the Audi ultra-award for best lightweight concept. “It was a heart-stopping few days of ups and downs but we did it,” de Morée exclaimed.

With CATIA we had confidence in our design and in our ability to come up with the best vehicle possible in a very short timeframe.”

Discover the full story in video on 3ds.com

CATIA, the Winning Partner for the DUT Racing team

Improving the Reliability of Consumer Electronics Products Through Realistic Simulation

By Harish

Realistic simulation for Electronic products

Early product failures and product recalls are very costly. They result in loss of revenue, litigation, and brand devaluation among others. Hardware recalls are often costlier than software recalls as software patches can be easily downloaded and installed once flaws come to light. But recalls and early product failures tend to happen over and over again. Why? Because engineering teams are constantly under the gun to improve product performance, reduce form factors, and reduce time to market, all while cutting costs. In order to mitigate risk engineers need to develop a deeper understanding of the product behavior under real operating conditions and quickly evaluate design trade-offs based on overall system behavior.

Physical tests provide an excellent means to understand product behavior. However, physical testing is expensive and time consuming. Simulation provides a cheaper and faster alternative to physical tests. It is critical to strike the right balance between physical tests and simulation during product development. In order to get the maximum bang for your buck, simulations should be deployed starting early in the design cycle when physical prototypes are not available and the design is not fully developed. The earlier you find flaws, the earlier you can fix them. Since the cost of fixing flaws grows exponentially through the design cycle (figure below), identifying and fixing design flaws early in the design cycle is super critical.

Relative Cost of fixing errors in embedded Systems

Relative cost of fixing errors in embedded systems

Not all simulation tools are created equal. You don’t need any answer. You need the right answer. For that, you need simulation tools that most closely depict reality. And you need answers fast. Hence you need product testing and validation tools with industry leading physics and solver technology to obtain accurate solutions faster in order to help you improve product design, ensure product reliability and reduce time to market. Accurate depiction of material behavior and physics of failure are essential to obtaining realistic results. Such capabilities are critical in predicting the behavior of materials such as glass, adhesives, and polymers that have high propensity for damage.

Consumer electronic products, especially mobile and portable devices such as smartphones, tablets and laptops, are subjected to a variety of operating conditions. The devices need to be designed to protect them from damage. Engineers need to ensure that “portable” doesn’t mean “breakable.”

Tablet drop

The challenge is to design a light-weight product that can withstand not just the loading cycles associated with regular usage, but also abusive loading scenarios that are encountered less frequently (According to surveys and insurance claim statistics, drop and water damage constitute the two most frequent causes of damage for mobile devices.). Simulation should be employed at the ideation, product development, and failure analysis stages in order to improve product quality and reduce time to market. Refer to this  case study to learn how a leading manufacturer of consumer electronics used simulation to improve the keystroke feel and to enhance frame rigidity while reducing weight .

Tablet drop simulation

While drop during daily usage is a concern for mobile devices, transportation drops are the main concern for office equipment. The engineers are faced with the challenge of identifying the structural members that are most susceptible to damage and to improve their damage resistance while reducing the overall weight of the structure. Refer to the ebook below to know how a leading manufacturer of office equipment designed a low cost printer that can withstand a series of transportation drop tests.

The examples above provide a snapshot of applications leveraging SIMULIA Abaqus technology   to successfully improve product durability while satisfying other constraints such as weight and cost.

More example related to  how engineering teams are using virtual testing to predict stresses, optimize design performance and reduce time to market can be read in  this ebook .

How to Make a Human Heart

By Alyssa

A pain in your chest that quickly spreads to your arm causes you to fall to your knees. Inside your body, oxygen-rich blood that normally flows to the heart muscle is suddenly blocked. If blood flow isn’t restored quickly, your life hangs in the balance.

Chest pain

In the United States, someone has a heart attack every 34 seconds. While stents, transplants, angioplasty, by-pass operations, drugs and improved patient care have dramatically cut deaths from heart disease, it remains the number one killer. The World Health Organisation (WHO) estimated in 2013 that the disease globally accounted for 17.8 million, or one in three, deaths.

But what if one day doctors could simulate an exact replica of your heart, imitating its unique electrical impulses, muscle fibre contractions and potential abnormalities? The model would not only allow doctors to observe how the heart had changed after the attack to help treatment, but might even have prevented it in the first place.

Read the rest of this entry »



Page 1 of 1512345...10...Last »
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.