Making Global Medical Device Product Innovation A Reality – Watch the Webinar Replay

By Helene

Technically and geographically diverse product development teams must work together more closely than ever to develop medical devices which will focus on the needs of patients and doctors globally. In order for medical device companies to compete, traditional voice of customer (VOC) approaches need to keep pace with healthcare consumers increasingly sophisticated product needs. Medical device product innovation can result from improved ideation which facilitates collaboration between all global stakeholders.

Medical device product development is a complex process involving research and development teams, designers, and the marketing and regulatory teams that gather requirements from customers and governing agencies. A 2012 report from Axendia titled “Walking the Tightrope: Balancing the Risks and Rewards of Med-Tech Globalization” highlights the opportunities and challenges posed by increasing globalization. Medical device product opportunities lie in growing global patient markets and working with outsourced partners in a more collaborative role. Challenges include increasing data visibility and analysis as well as keeping track of regulations for each region.

Smart Watch Design for the Life Sciences Industry

Smart Watch Design for the Life Sciences Industry

Dan Matlis, president of Axendia, was one of three speakers at Dassault Systèmes (3DS) sponsored webinar during the December 3rd (now available on replay) discussing results from this report as well as ways medical device companies can address them. The webinar titled “Learn How Leading Medical Device Organizations are Driving Innovation in a Global Marketplace”  also included Cathi Crist, Partner and leader of the Life Sciences practice at Kalypso where she educated viewers on how product lifecycle management (PLM) facilitates innovation. Rounding out the webinar was Stuart Karten of Karten Design, where he shared his firsthand insights on how leading medical device organizations are leveraging design and innovation to improve and create new products. Click here to watch the webinar replay.

Today’s global consumers develop strong and sometimes very personal reactions about the healthcare products they experience, and are quick to discuss their likes and dislikes via social media. These tweets, Facebook updates, and Instagram posts in turn create more discussion and opinions among their network and beyond. These data create a rich product development resource for medical device companies. Focus groups and surveys have always been used by companies to gauge needs of their customers, but they can be time intensive and expensive. Innovative medical device companies realize that listening to customers first, in real time, rather than being reactionary when complaints arise, will be the winning strategy. Indeed, putting patients and doctors first, and even involving them in the product development process, will result in more customer satisfaction and sales.

The Dassault Systèmes Ideation and Concept Design for Medical Device Industry Solution Experience redefines medical technology workflow via social collaboration. Powered by the 3DEXPERIENCE platform, it is the first cloud-based, all in one innovation management system. This solution was highlighted during the webinar, and in keeping with social collaboration, we hope you can join the discussion, and leave any comments or questions below.

What is Building Lifecycle Management (BLM)?

By Marty R

Building Lifecycle Management (BLM) is the practice of designing, constructing, and operating a facility with a single set of interoperable data.

BLM puts into practice a BIM Level 3 approach that enables a highly efficient Extended Collaboration process based on Manufacturing industry best practices.

BLM is operationalized via a robust Product Lifecycle Management (PLM)* system, which creates an efficient environment for coordinating complex AEC (Architecture, Engineering & Construction) data.

[*The traditional Product Lifecycle Management term commonly becomes Project Lifecycle Management when applied to AEC.]

Adding BIM data to a PLM system creates a BLM system:

BIM + PLM = BLM

Benefits of BLM

BLM enables BIM Level 3 and can increase construction predictability, long-term value for project owners, and profitability for AEC project contributors.

The core benefits of employing BLM are improved productivity, sustainability, and quality, and reduced waste, risk, and cost.

Tweet: Building Lifecycle Management (PLM + #BIM) improves #AEC productivity while reducing cost and so much more @Dassault3DS http://ctt.ec/6N7nh+

Click to tweet: “Building Lifecycle Management (PLM + #BIM)
improves #AEC productivity while reducing cost and much more”

These advantages are achieved through BLM’s ability to eliminate rework, reduce RFIs (Requests For Information), centralize data, contextualize information, and more accurately predict outcomes.

Improve Productivity

Centrally managed data helps remove version control issues, chances for human error, and even the need to manage files.

With all users accessing a single live database via web services, rework (e.g., redundant drawings) and iterations can be drastically reduced.

As users proactively resolve issues in real-time using a BLM system, inefficient RFIs, submittals, and change orders can be reduced or eliminated.

Increase Quality and Value from Suppliers

Designers can make better decisions within a richer data context and maintain greater control over the quality of the finished product with BLM.

Collaborating in a BLM environment can help construction firms and building systems manufacturers develop a greater understanding of project requirements. With reliable data, builders and suppliers can improve coordination, execute more quickly, and accurately realize the design intent.

BLM also offers built-in governance and traceability, improving accountability across the disciplines.

Reduce Waste, Risk, and Cost

Regular cost overruns of 15 to 30 percent and standard risk margins of 20 percent or more illustrate the expected waste caused by traditional construction processes. By contrast, repetitive manufacturing processes typically yield only 2 to 3 percent waste.

Tweet: Building Lifecycle Management (PLM + #BIM) can reduce #AEC waste to just 2% @Dassault3DS http://ctt.ec/TZ679+

Click to tweet: “Building Lifecycle Management (PLM + #BIM)
can reduce #AEC waste to just 2%”

BLM is designed to reduce waste by more accurately predicting outcomes, identifying potential points of conflict, and optimizing processes.

By the same methods, BLM also reduces risk to the project schedule, worker safety, and overall construction budget.

Gain a Competitive Advantage

The potential opportunity for AEC firms to gain a competitive advantage is to embrace BIM Level 3 early, before the market calls for further mandates.

Getting ahead of the curve with a BLM system enables a team to become more efficient than competitors, deliver higher quality, gain the loyalties of owners and design partners, and retain a healthier profit margin.

Example: Manufactured Systems

Manufactured systems such as curtain walls and façades are often the most complicated and costly elements of a construction project.

The façade often accounts for 15 percent of a construction budget. Façade models traditionally do not include data on the fabrication process, but manufacturing time can be reduced significantly — by up to 50 percent — if the fabrication process is defined in the design stage.

Close collaboration between the designer and the façade manufacturer is enabled with transactable BIM data and a BLM system.

When designers work with building product manufacturers to ensure the design intent is realized and improve supply chain efficiency, the entire project benefits.

Example: Identifying Conflicts Between Fabrication Models

During the Design Review process, modeled fabrication detail of a structure designed in CATIA® is imported and integrated with a pipe model created in a different system.

BIM data from a range of systems are reconciled within the BLM environment, where issues are identified and tagged for follow-up.

AlignmentFabrication models of multiple building systems in a single environment.

Case Study: Swire Properties One Island East Success Story

One_Island_East_201302-Image-Source-Wikimedia-Commons-courtesy-of-WiNG

One Island East, Hong Kong | Wikimedia Commons image courtesy of WiNG

Swire Properties Ltd. applied BIM Level 3 processes and technologies for its One Island East tower in Hong Kong.

The 70-story, 1.75 million square foot project was delivered on time and with zero cost overruns. 3D clash detection became a primary vehicle for enhancing the coordination process.

Over 2,000 issues were identified and resolved prior to tender, but the One Island East project team issued just 140 RFIs, a 93% reduction from traditional 2D drafting processes.

This project won the 2008 AIA Technology and Practice Award.

BIM Level 3 Project Outcomes

  • 70 stories
  • 1.75 million sq ft
  • On schedule: 24 months
  • On budget: $450 million
  • Greater than 2,000 clash issues proactively addressed
  • 140 RFIs: Greater than 90% reduction vs. similar projects

Manufacturing Industries Have Blazed the Trail

Manufacturing companies and their technology partners have been refining PLM for decades, and investing heavily in advanced systems.

Case in point, the first plane ever built without a physical prototype, the Boeing 777, was mocked up using a Dassault Systèmes application in 1994.

With today’s BIM data standards, proven PLM practices and technologies are now readily available for AEC to leverage — in the form of BLM.

Digital Mock-Up Process at Airbus

 

AirBus, model section

Airbus and its partners collaborate around a virtual model of an airplane. The model provides a Single Version of the Truth for 3D information and all data related to the designed airplane and its usage throughout its lifecycle.

YouTube Preview Image

 

Tweet: What is Building Lifecycle Management? @Dassault3DS #BIM #AEC http://ctt.ec/Ecbzu+

Click to tweet this article:
“What is Building Lifecycle Management?”


Cover: END-TO-END COLLABORATION ENABLED BY BIM LEVEL 3 An Industry Approach Based on Best Practices from ManufacturingExcerpted from End-To-End Collaboration Enabled by BIM Level 3 (Dassault Systèmes, 2014).

Related Resources

Download the Dassault Systèmes whitepaper, “End-To-End Collaboration Enabled by BIM Level 3: An Architecture, Engineering & Construction Industry Solution Based on Manufacturing Best Practices”

The International Conference on Harmonisation’s Planned Drug Manufacturing Guideline: What Do Pharma Manufacturers Need To Know?

By Jennifer

International Conference on HarmonisationThe International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) is an organization that brings together pharmaceutical regulatory authorities in Europe, Japan, and the United States towards the goal of standardizing processes for safe and effective drug discovery and development. On October 10th, 2014, ICH published an initial concept paper for guidance in its Quality category titled ”Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management.” The resulting ICH Q12 guideline, due to be available in 2017, will complement existing quality assurance plan guidance in the pharmaceutical development and launch phases with regulatory recommendations in the later chemistry manufacturing and controls (CMC) phase. Adoption of ICH Q12 will benefit patients, pharmaceutical/ biotech companies, and regulators through continual improvement of post approval processes. So what should you do?

In this article, we will review the concept paper as well as to begin to highlight how the 3DEXPERIENCE Platform and the Licensed to Cure for BioPharma industry solution experience can help you prepare for, and implement the ICH Q12 guidance. We will follow the ICH Q12 updates closely on the blog, see all posts tagged with ICH here.

Licensedd To Cure For BioPharma

Representation of the solution (example).

While ICH Q12 is a very fitting addition to the organization’s Quality guidelines, the concept paper makes it clear that creation of the guideline is due to unforeseen gaps in the implementation of  ICH Q8-Q11, which are as follows:

 

The ICH Q12 guideline is expected to impact the following areas

  • Regulatory Dossier
    • Updates aimed at improving post approval changes
  • Pharmaceutical Quality System (ICH Q10)
    • Develop improved knowledge and change management systems
  • Post-approval Change Management Plans and Protocols
    • Establish criteria for managing and submitting post-approval changes

 

The benefits of ICH Q12 implementation include

  • Improving reliability of the supply of pharmaceuticals through more CMC change management processes
  • More standardized and useful regulatory dossiers
  • Enhance use of regulatory tools for Post-approval Change Management (PACM)
  • Continual improvement of the manufacturing process
  • Reduction of product variability
  • Increased manufacturing efficiency

 

The benefits of product lifecycle management

At Dassault Systèmes (3DS), we have long recognized the benefits of product lifecycle management in improving the drug manufacturing process and ultimately the patient experience. The Licensed to Cure for BioPharma industry solution experience powered by the 3DEXPERIENCE platform combines advances in collaboration, global product development, and information intelligence to provide operational excellence. This single version of the truth, systematic  approach to drug manufacturing fits well with the ICH Q12 vision, and we look forward to working with biotech and pharma manufacturers to guide them in adapting to these changes. You can learn more about 3DS pharma and biotech solutions by attending the 3DEXPERIENCE Forum—North America, taking place November 12-14, 2014 in Las Vegas.

The ICH Q12 guideline will represent a major change as it will be applicable over the lifecycle of the product and focused on the CMC phase. An Expert Working Group (EWG) will be comprised of assessors and inspectors with expertise in quality systems and pharma manufacturing of chemical, biological, or biotechnological products. The EWG will meet in November 2014, June 2014, and November 2015, with the Adoption of Step 2 Document occurring in Q2 of 2016 and Adoption of Step 4 Document occurring Q2 2017 (see this description for details of the ICH process). Although not all regulatory authorities (such as the Food and Drug Administration, (FDA)) adopt the ICH Guidelines directly, ICH Q12 will surely impact regulatory requirements globally.



Page 1 of 1512345...10...Last »
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.