Does manufacturing have the most to gain from the 3DEXPERIENCE platform?

By Tony

Manufacturing chain

Hello, I’m Tony Karew, also known as one half of the dynamic duo called The Robot Whisperers. This blog kicks off the first of many focusing on Manufacturing. I’ll be devoting most of my blogs to the topic of robotics on the 3DEXPERIENCE Platform. Here we will discuss the latest innovations in technology and how it applies to manufacturing.

Innovations in technology are making companies leaner and faster, increasing their products’ velocity to market. Innovative technology makes it easier for companies to deal with the complexities of bringing products to market faster and with higher quality. For years it has been easy for design engineers to take advantage of the many advances in software, computers, and data storage. Finally, these advances are available today across the enterprise in manufacturing.

Bringing the advances of design engineering to the shopfloor

Years ago when production simulation came along, it was a game changer for the manufacturing domain. At last, manufacturing concepts could be qualified and their success or failure could be validated virtually. Simulation was a technological breakthrough, and when placed in skilled hands, could easily save tens of thousands of dollars. The problem was manufacturing still had a major disconnect from the product engineering group, and there was no way to manage all this new data. There was no way to conveniently store each engineer’s work or track their progress. There also was no way to easily search and find tools, products or other resources. And things like versioning and configuration management were reserved for product data. But does versioning and configuration management apply to manufacturing systems? It definitely can. But the fact is, this technology has been used by designers for years. However it was never available to manufacturing. That is until now on the 3DEXPERIENCE Platform.

Manufacturing knowledge at your fingertips

Finally engineers in manufacturing can take advantage of the advancements in technology. They are now better equipped to track project workflow. They can easily locate processes, resources, parts, products, and tools. They now have the capability to divide up engineering tasks into smaller pieces for improved department workflow, with immediate access to project data and timelines. They also have the ability to instantly communicate across the project to resolve issues and improve productivity. Not only is the project management aspect of engineering improved, this technology also allows manufacturing to be very closely aligned with design, so things like accommodating fastener changes in the manufacturing process are now much easier than ever before.

The best part is, all this exists on a single platform. These technologies will certainly play a significant role in the manufacturing and industrial engineering domains. With this is mind, I think that manufacturing has the most to gain from the 3DEXPERIENCE Platform. What do you think?

To learn more, join in the conversation or visit our blog “60 Seconds to Experience”.

Enhancing Semiconductor Design/Manufacturing Collaboration

By Eric

Whether for a single customer or a larger market, investing in new semiconductor products is a high risk business with the potential for strong profitability, but also significant loss. Mitigating risks in the manufacturing process go a long way in assuring that those business investments are profitable. Risk mitigation can be done through comprehensive automation of the collaboration between engineering to manufacturing.  A number of benefits accrue through automation:

  • Consistent use of best practice know-how
  • Reduction of ECO costs  from best-practice process deviations
  • Enhanced oversight and compliance for material and chemical content reporting
  • Acceleration of product introduction time
  • Faster, lower cost accommodation for unexpected supply chain change decisions

 

This automation requires an integrated approach to configuring and managing the sourcing network as it applies to the IC BOM. The notion of an inverted IC BOM (see figure below) provides a model for defining the steps from which a wafer then is transformed into integrated circuit parts inventory. This becomes especially important when singulated dies find their way into a wide variety of finished goods SKUs.

IC BOM Example

The automation of this process is best done using a configurable rules system and process definition editor that creates hierarchical process that defines the execution of wafer-to-parts transformation. That transformation must not only embody best possible scenario that maximizes profitability, but also be configurable to accommodate unforeseen business and technical factors that require deviation from best business case in order to meet customer commitments. It should also  accommodate corrective workflows for possible process deviation errors.

The rules engine should be able to define the complete sourcing network including fabrication, bumping, singulation, assembly, sorting, testing, marking and inventory storage and shipment. Process managers should be able to create and change these processes without resorting to low-level IT coding support, so as to quickly respond to supply chain issues. The resulting process should also provide up-to-date requirements and test result traceability from NPI to manufacturing. It should include  analytics for flexible, end-user configurable assessment of process performance.

This process engine is then the structure for distributing manufacturing requirements and instructions, collecting test and operational data, creating a single go-to resource for design-to-manufacturing oversight.

Come visit us at the Design Automation Conference in San Francisco next week where our process architects for design-to-manufacturing process coordination will be discussing and demonstrating solutions and best-practices. We’ll be offering a full presentation and demo agenda, a cocktail hour and prizes.

How 3D Printing Is a Revolutionary Sustainable Innovation

By Asheen

3D printingAs a sustainable innovation leader at a technology company, I’m often asked about the implications of recent advances on sustainable innovation. In this article I’ll highlight the potential of 3D printing to revolutionize sustainable innovation.

Three-dimensional printing — or more specifically, additive manufacturing, the term generally used to mean commercial-scale production using 3D printing technologies — is a concept that deserves its geek fandom. But I’d wager that few people have appreciated its revolutionary implications as a sustainable technology. Philosophically, 3D printing is the first technology that has the potential to enable a more biomimetic production model by aligning with one of nature’s fundamental tenets: the tendency to manufacture locally. (These and other deep design principles from nature are collectively known as the practice of biomimicry.)

Why Additive Manufacturing is a Shift

To understand why, consider the difference between how an object is traditionally manufactured and how one is produced additively. Traditional manufacturing methods focus on milling a starting blank — that is, removing material until you’ve achieved the desired shape — or injecting material into a mold. Both types of processes rely on expensive, high-throughput machinery to achieve high economies of scale that minimize costly raw material waste, so such manufacturing is generally performed at a company’s main production facility and then shipped around the world. In an additively manufactured product, in contrast, the product is printed layer by layer, with each cross section stacked on top of the one below it. Since this operation can be performed without huge, high-throughput machinery, it can be performed at hundreds or thousands of remote locations — or millions, if you consider the potential of a 3D printer in every household — with near-zero waste.

This hints at a very interesting shift for commercial product makers: they can focus on designing the best product as the source of their intellectual capital, rather than on how the design can be cheaply manufactured. Imagine, for example, if we could purchase the 3D model of an object we wanted to buy, rather than the object itself, and then download and print it in our home 3D printer. By buying this design from an “app store” of 3D objects rather than a brick-and-mortar shop, and printing it ourselves, we’ve completely eliminated all of the waste of traditional manufacture, as well as 100% of the energy and material normally consumed in transportation and packaging — while enjoying a more custom-tailored and convenient shopping experience.

3D Printing Materials

Sustainable Manufacturing

It’s also worth highlighting the materials that are typically used in a 3D printer — surprisingly, here too we can find a sustainability story. The most common materials used for the printing of plastic parts are acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Both are thermoplastics; that is, they become soft and moldable when they’re heated, and return to a more solid state when they’re cooled. ABS is far from environmentally friendly, but PLA is actually a sugar-derived polymer, so it can be made from plants; most commonly, it’s made from corn. (If you’ve ever drunk from a clear plastic cup or used a plastic fork marked “compostable” or “made from corn”, that was PLA.) Provided that we use ecologically sound agricultural practices, we could sustainably grow the feedstock for all of our 3D-printed objects!

The other beautiful thing about thermoplastics is that they can be re-melted and reshaped into new objects several times (though not infinitely, as their structure will eventually depolymerize). That means that when you’re ready to change your toy truck into a toy airplane, you could, in theory, toss it back into the 3D printer to be reshaped into the new object. This gets to one of the biggest sustainability challenges with plastic products today: their end-of-life treatment. Putting plastics into curbside recycling bins seems like an environmentally sound idea (and it’s still better than throwing them into a landfill), but once they’re trucked, sorted, cleaned, and usually commingled with lower-value resins, there’s usually not much economic margin to squeeze out of these recycled plastics — one reason why their rates of recycling are so low. In contrast, putting your pure PLA back into your 3D printer eliminates this whole recycling chain — so we can add “end-of-life impacts” along with transportation and manufacturing waste to our list of eliminated life cycle impacts.

Metals can also be made using an additive manufacturing practice called selective laser sintering (SLS), although these “printers” are much higher-end. Once these become suitable for casual use, it opens up a whole new category of objects that can be built. Although in theory metal is infinitely recyclable (its simpler crystalline structure does not degrade with re-melting), the grinding steps needed to reprocess the used metal into powder suitable for sintering would require a lot more equipment and energy, and would likely prohibit the recycling of 3D-printed metal objects in the same printer – even a direct SLS printer (which uses a single material powder).

At the Doorstep of Future Usages

True radical innovation occurs not from new technologies, but when those new technologies enable newly possible business models. Take, for example, the cool modular mobile phone concept called Phonebloks. Imagine that you want that new, higher-megapixel cell camera block that they refer to… so you just buy and download the new block, toss your old one back in the printer, and print up the new model in PLA with a metal layer with the electronics sintered on — all powered by the solar panels on your roof. Now, we’re starting to approach the manufacturing process used sustainably by nature over the last 3.8 billion years. And someday; your house?

Asheen PhanseyAsheen PHANSEY is Head of the Sustainable Innovation Lab at Dassault Systèmes



Page 1 of 41234
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.