Designing for the Medical Device Industry: The Future – Connected Health

By Helene
Initially posted by CORE77

With the explosion of wearable technology and legislation like the Affordable Care Act, the medical product industry is rapidly evolving. Healthcare is seeing unprecedented changes, creating new opportunities for devices that connect consumers and doctors to information faster, easier, and more efficiently.

“It’s coming to a point where there are just amazing breakthroughs every day,” says Tor Alden, Principal and CEO at HS Design (HSD), where he has been directly involved in medical design for over 14 years. “[Technologists] are innovating and changing the landscape of how healthcare is going to be done to the point where we’re not going to recognize it in the next three or four years from where it is now.” It’s a changing landscape that has caught the eye of many innovative startups, who now make up half of HSD’s client list.

These new products have amazing technology, but it needs to be humanized and centered on user needs to be successful.”

HSD is positioning itself to be a bridge connecting the medical and healthcare startups with the investment banker communities. Alden predicts that if the growth continues at this rate, that number could be closer to 80% in the next few years.

The AliveCor heart monitor. Designed by Karten Design.

One of the factors opening the door for innovation in the medical device industry is the Affordable Care Act. As requirements roll out for health care providers, there is an increasing need for new tools and products that ensure patient compliance. Take a typical hip replacement, for example: Under the Affordable Care Act, if a doctor or hospital is not tracking the compliance and rehabilitation of that patient and they return within a year with no improvement, the hospital owes money to the government. There’s a financial incentive to make sure patients get better and, therefore, to track and evaluate their progress. This could spur invention around hip replacements—possibly leading to one with a chip (i.e., embedded UDI) to track rehabilitation or remind patients to get complete their physical therapy exercises.

“The Affordable Care Act is a great opportunity for the design community right now. Everybody is trying to figure out how to innovate increase patient compliance and allow caregivers tools to manage the healthcare services,” says Alden. “Between that and the iHealth generation of iPhones, smartphones, iPads, and everybody wanting to have more control over their healthcare knowledge, there’s a huge opportunity for new products.”

In the century of the wearable device, nearly everyone has some type of personal fitness tracker. For the medical device industry, this means a rise in connected health as consumers clamor to track everything from their steps to calories to sleep cycles. With that surge in technology comes an accelerated need for the design and development of interfaces between the technology and the consumer. “This is the most interesting space that a designer could work today. It’s fascinating,” shares Aidan Petrie, Co-Founder and Chief Innovation Officer of Ximedica, a medical product development company headquartered in Rhode Island. “We work between humans and the products they use and make sure that they are more usable, satisfactory and safer.”

Ideation & Concept Design

Despite the incentive for new and better products, the medical device industry remains a difficult niche to break into, due to FDA regulations, enormous amounts of capital required, the need for a high level of specialization, and timelines that span 2–6 years. All these factors contribute to a high failure rate, causing many of these projects to be cancelled before they even reach the prototype stage.

Dassault Systèmes is trying to lower that rate of failure by creating software applications that help these companies better understand and anticipate these challenges from the beginning of a project. The software company released an all-in-one program called Ideation & Concept Design for Medical Device industry solution experience, a cloud-based platform designed specifically to take a team through the entire product development process. From initial ideation and market research to verification and validation, the system tracks deliverables and traceable requirements demanded of the strict FDA and other regulations around this sector. With Ideation & Concept Design for Medical Device, Dassault Systèmes shortens the amount of time it takes to bring a product to market, which is critical in a quickly expanding market where there is no time to waste.

The medical device industry will explode for the next twenty years. It will be the place to be focused as a designer,” says Petrie. “It’s great doing things that change people’s lives, and a product can still look beautiful at the same time.”


Check out Beyond the design of the Medical Device to dig deeper into this topic and access the “Ideation & Concept Design for Medical Device” information kit here, over on Dassault Systèmes’ site:  Ideation & concept design for medical device.

Designing for the Medical Device Industry: Holistic Solutions

By Helene

This post originally appeared at Core77.

A Multi-Faceted Approach

Bringing a consumer product to market is a challenge in and of itself—taking an idea through concept development, business analysis, beta testing, product launch, and beyond. Add the FDA (Food & Drug Administration) to the mix, and it’s a whole ‘nother story. This is the challenge faced by medical device and product firms, which not only have to make a fully functioning, well-designed product but also have to put it through several rounds of rigorous testing by the FDA and other regulatory bodies.

The AliveCor heart monitor, designed by Karten Design.

“They’re parameters. They don’t stop you from doing anything, but they do make you do it in a way that you, as a user, would probably think is a good thing,” says Aidan Petrie, Co-Founder and Chief Innovation Officer of Ximedica,

an FDA-registered product development firm with an exclusive focus on medical products. On any given day, Ximedica is running 40 individual programs, overseeing the steps required to bring these products to market. “We don’t do anything that isn’t a FDA-regulated product,” says Petrie.

The timelines for these projects can run anywhere between two to six years. While time-to-market is not the primary driver, finding ways to close that gap can make a big difference in profitability. For companies like Ximedica and HS Design, closing that gap meant becoming International Organization for Standardization (ISO) 13485 certified. “There are so many regulatory and quality metrics that had to be put in place to satisfy those requirements that it made us a better and stronger company,” explains Tor Alden, Principal and CEO at HS Design (HSD). “It also put us to a level where we couldn’t just accept any client. We had to become more sophisticated as far as who our clients were and how we could say no or reach a point of compliancy.” By building those regulations into the design process, these companies are able to anticipate and plan for any potential timely obstacles from the get-go.

As the products become increasingly complex, so do the regulations around how they’re developed. Traceability of every decision is required for ISO and FDA compliance, ensuring that medical device firms have a standardized quality management process that they follow and document every step of the product’s development. Depending on the type of product, specialists are often brought in to advise different aspects of that process. “There are so many parts to the puzzle,” says Petrie. “We have a hundred and forty people, but we still need specialists all over the place. We have regulatory people on staff, but we also bring in other pieces that we need. While all the people we have in the building are experts in medical device development, when we need someone to develop some optics, we go outside for that. It’s very collaborative because nobody can do it all by themselves.”

As an FDA-registered developer and contract manufacturer, Ximedica takes products all the way through to clinical trials—a part of the process that comes with its own set of requirements all its own. Even a product as benign as a toothbrush, for example, calls for regulations under HIPPA (Health Insurance Privacy and Accountability Act) if it is being tested by people over the age of 65, under 18, or those living with certain medical conditions. Being able to connect these requisitions to product features in the beginning would allow a project manager to track deliverables and foresee any hurdles before the final design goes to Verification and Validation.

Concept design of a smartwatch

Companies like Dassault Systèmes hope to offer a holistic approach to these problems. Similar to how Ximedica has positioned themselves as the one-stop-shop for all of the components needed to bring a medical product to market, Dassault Systèmes’ Ideation & Concept Design for Medical Device creates a space for designers, marketers, specialists, and collaborators to bring an idea through all the phases of the design process. Powered by their 3DEXPERIENCE® platform, Ideation & Concept Design for Medical Device brings together automated market listening, 3D-drawing to 3D-design integration, traceability, and project management together in one program—in the cloud.

“It’s very challenging to get a medical product to market in less than two years,” explains Alden. “A lot of it has to do with how challenging it is from the FDA standpoint and getting it through the regulatory bodies, but a lot of it is making sure that everybody is working with the same sheet music. Most important is to capture the user needs upfront and translate them into quantifiable attributes.  Additionally we need to combine these user needs with the technical issues into a product requirement specification.  Managing all these aspects of a project, understanding all the players, and the regulatory milestones is vital to shortening the time to market.”

Check out Beyond the design of the Medical Device to dig deeper into this topic and access the “Ideation & Concept Design for Medical Device” information kit here, over on Dassault Systèmes’ site: Ideation & concept design for medical device.

Research Heralds 3D-Printed Organs and even Hearts

By Catherine

3D printing human organs

Written by Catherine Bolgar

Few would have guessed the trajectory from 1970s inkjet printers to 3D printed organs consisting of human cells, yet, that’s where we’re headed.

3D printers apply layers of melted plastic to create complex objects, from the silly to the serious, including personalized prostheses such as eyes, ears or knees. A patient at the University Medical Center Utrecht, the Netherlands, recently was the first to receive a custom 3D printed plastic skull.

A step beyond plastic parts is a biological-synthetic combination. A personalized 3D printed scaffolding is made of synthetic material, on which living cells are placed that will grow around the structure. This technique, which prints the structure but not the cells, is being examined for bone and for skin.

Cells we isolate from fat will stimulate bone formation and blood vessel formation in these structures,” says Stuart K. Williams, director of the bioficial organs program at the University of Louisville, Kentucky. “That is on the cusp of becoming utilized in a more widespread manner.”

The next goal: to use 3D printing techniques with live cells. Tissue made artificially with real human cells is called “bioficial.”

A patch of bone tissue may one day help patients whose vertebrae are damaged by an injury or cancer. Cartilage, which doesn’t regenerate on its own, could be repaired with bioficial tissue created from patients’ own cells. And perhaps, someday, entire organs could be replaced.

3d printed head

Cells are trickier to work with than plastic. The printer itself has to be adjusted—rather than melting at high temperatures, it has to use low temperatures that won’t kill the cells. It has to be sterile. A robot-controlled syringe squeezes out the cells, which are suspended in a gel that can solidify and maintain the desired shape, similar to gelatin desserts. But those desserts melt when they get warm; for the 3D printed tissue not to melt in the heat of the body requires other chemical processes to ensure they retain the desired shape, says Jos Malda, deputy head of orthopedic research at University Medical Center Utrecht.

Not just that, but each cell needs nutrition. When a body part or organ loses its blood supply, it dies. “If you create a larger construct in the lab, keeping that piece alive is a big challenge,” Dr. Malda says.

Finally, “having cells in the right place doesn’t mean an organ will function,” Dr. Malda says. “But never say never.”

These challenges are why Dr. Williams decided to focus on a bioficial heart. “It doesn’t have complex metabolic activities like the liver or kidneys do. A heart is simply a pump. It pushes blood out and allows blood to come back in,” Dr. Williams says.

The artificial heart was one of the first implanted devices made of synthetic materials. Dr. Williams’s team is working to make a bioficial heart, starting by printing individual parts: the valves, the cardiomyocytes (heart muscle cells), the electrical conduction system, the large blood vessels and the small blood vessels.

We have made dramatic steps forward printing the individual parts of the heart,” he says. “We haven’t assembled it yet, but it’s likely to happen in the not too distant future. It won’t be ready for implantation, but we will be able to understand how the heart works in assembled form.”

The first step is to assemble blood vessels to ensure the blood supply. That would allow for building tissue two to four centimeters thick that has its own blood supply.

Back in 1988, Dr. Williams used fat-derived cells to build a blood vessel and put it into the body of a patient. “Fat has the capability of forming all the different cells found in the heart,” he says.

Some day, doctors might be able to take a patient’s own cells to build a replacement organ, thereby getting around the problems of rejection of a donor organ.

Perhaps we’ll find out it isn’t necessary for a bioficial heart to look exactly like a real heart, or a bioficial kidney to look exactly like a real kidney for them to work well. “Maybe we can make it more simplistic, using a slightly different blueprint,” Dr. Williams says.

Will the first use in a patient be the complete heart or parts of a heart?” he asks. “I think it will be parts: a patch of large and small blood vessels.”

Such a patch, which researchers are trying to make in the lab, could be used in a patient whose blood isn’t reaching part of the heart. Another possibility is pediatric applications, for children whose hearts haven’t formed properly because of a genetic defect.

We’re hoping that one day we’ll be able to treat the patient by repairing parts long before they are in such a condition that we have to replace the entire organ,” Dr. Williams says.

For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.



Page 1 of 812345...Last »
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.