Cross-species organ transplants set to increase

By Catherine

Written by Catherine Bolgar*
Augmented reality heart

Almost 115,000 solid organs were transplanted in 2012, which was less than 10% of global needs, according to the Global Observatory on Donation and Transplantation. In the U.S., 18 people die daily while waiting for an organ transplant.

Xenotransplantation, or transplants from other species, could provide an unlimited supply of organs and cells. Huge strides have been made in this area in the past decade, but challenges remain.

After initially focusing on primates such as baboons and chimpanzees, researchers have turned to pigs, which grow quickly to the appropriate size and which are in abundant supply. However, the human immune system reacts more strongly to pig organs than to human organs.

If you put a human organ into a human with no anti-rejection treatment, it will survive about a week,” says David K. C. Cooper, professor of surgery at the University of Pittsburgh’s Thomas E. Starzl Transplantation Institute. “If you put a pig organ into a human, it will last five to 10 minutes. There’s a much stronger immune response.”

Sugar molecules, called galactose oligosaccharides, on the surface of cells in the pig organ provoke human antibodies into action. So scientists have been genetically modifying pigs to knock out the genes that produce the offending sugar.

That helps, but it isn’t enough. Researchers are trying to delete other genes responsible for major antigens recognized by the human immune system and to add protective human complement-regulatory proteins. Complement proteins are part of the system that destroys cells that the body has identified as being foreign. Differences in how pigs and humans control blood coagulation also is a challenge—too much coagulation and you get thrombosis, not enough and you get bleeding. Now some pigs have been modified to express human anticoagulants. A number of pigs have different combinations of added or deleted genes.

It’s becoming much more precise the way you can genetically modify the pig,” says Peter Cowan, scientist director of the Immunology Research Centre at St. Vincent’s Hospital in Melbourne and president-elect of the International Xenotransplantation Association. “The thing with xenotransplantation that you can’t do with humans is you can keep modifying the donor. You can identify new problems and can keep adapting the pig to the human recipient. In that respect, pig donors might be as good as, if not better, than human donors in the long run.”

Heart valves from ordinary pigs have been used in humans for years, with best results in older patients whose immune systems are less robust. The valves are treated with agents that protect the pig cells, and therefore injury to the cells is slow, Dr. Cooper says.

Some of the biggest hopes are transplants of pancreatic islet cells, which produce insulin. Pig islets transplanted into nonhuman primates have successfully reversed diabetes.

Sixteen humans with Type 1 diabetes received pig islets in a clinical trial in New Zealand, eight in Argentina and eight in Russia, according to Living Cell Technologies, the Australian biotech company conducting the trials. To protect against immune response, the islets were encapsulated. The patients were able to reduce, but not completely stop, their insulin doses.

The World Health Organization estimates that 347 million people worldwide have diabetes. One day, successful transplants of pig islets could let diabetics regulate their insulin levels without the need for insulin injections.

Successful pig organ transplants are farther in the future. Two baboons at the U.S. National Institutes for Health currently have pig hearts transplanted into them. One has been beating for more than a year and the other for more than two years. “That’s a big step forward,” Dr. Cooper says. However, the baboons’ own hearts are still beating alongside. “We are now asking the question of whether, if you replace the baboon heart with a life-supporting pig heart, will you obtain the same result?”

Next in order of difficulty come kidneys, livers and lungs, all of which present coagulation challenges in addition to rejection.

One of the big concerns in using animal donors is the transfer of diseases to humans. The genome of any pig individual is unique, so each pig has a different set of porcine endogenous retroviruses, or PERVs. These PERVs aren’t transmitted by infection, like other viruses, but instead within cells, from mother to child. “This is the inherent risk that pig cells realize,” says Ralf R. Tönjes, head of the “non-vital tissue preparations, xenogenic cell therapeutics” section at the Paul-Ehrlich-Institute in Langen, Germany. “We have the tools and diagnostic techniques to screen the pigs for the presence or absence of infectious PERVs.”

In addition, “all the exogenous germs have to be excluded from any donor pig used for xenotransplantation,” Dr. Tönjes says. “This is the law. Any bacteria, viruses and fungi we know that could be harmful for the recipient have to be excluded by the proper screening program realized by the preclinical breeding facility. We’re talking about bacteria like staphylococcus and viruses like herpes. It’s a real, real effort.”

Pigs offer advantages in terms of germs. “You’re actually less likely to get a virus going from pig to human than from chimpanzee to human because of the distance between the species,” Dr. Cowan says.

The donor pigs can be raised in controlled, clean facilities, and constantly screened for pathogens. With human donors, “in many cases you don’t know what the donor has. There are some viruses that if you just recently got infected won’t show up in tests before an organ is transplanted,” he says. Except for cases where someone is donating a kidney or part of his liver, human donors are dead, and doctors can’t ask about medical conditions.

Working on multiple fronts—genetic modifications to donor pigs, new immunosuppressants and anti-inflammatory drugs—researchers hope to get to a point where transplants from pigs survive as long as transplants from humans.

If we resolve the remaining problems, the impact of xenotransplantation would be immense,” Dr. Cooper says. “Xenotransplantation could offer cures for millions of people world-wide with conditions like diabetes, Parkinson’s or corneal blindness, as well as organ failure.”

*For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.

Designing for the Medical Device Industry: The Future – Connected Health

By Helene
Initially posted by CORE77

With the explosion of wearable technology and legislation like the Affordable Care Act, the medical product industry is rapidly evolving. Healthcare is seeing unprecedented changes, creating new opportunities for devices that connect consumers and doctors to information faster, easier, and more efficiently.

“It’s coming to a point where there are just amazing breakthroughs every day,” says Tor Alden, Principal and CEO at HS Design (HSD), where he has been directly involved in medical design for over 14 years. “[Technologists] are innovating and changing the landscape of how healthcare is going to be done to the point where we’re not going to recognize it in the next three or four years from where it is now.” It’s a changing landscape that has caught the eye of many innovative startups, who now make up half of HSD’s client list.

These new products have amazing technology, but it needs to be humanized and centered on user needs to be successful.”

HSD is positioning itself to be a bridge connecting the medical and healthcare startups with the investment banker communities. Alden predicts that if the growth continues at this rate, that number could be closer to 80% in the next few years.

The AliveCor heart monitor. Designed by Karten Design.

One of the factors opening the door for innovation in the medical device industry is the Affordable Care Act. As requirements roll out for health care providers, there is an increasing need for new tools and products that ensure patient compliance. Take a typical hip replacement, for example: Under the Affordable Care Act, if a doctor or hospital is not tracking the compliance and rehabilitation of that patient and they return within a year with no improvement, the hospital owes money to the government. There’s a financial incentive to make sure patients get better and, therefore, to track and evaluate their progress. This could spur invention around hip replacements—possibly leading to one with a chip (i.e., embedded UDI) to track rehabilitation or remind patients to get complete their physical therapy exercises.

“The Affordable Care Act is a great opportunity for the design community right now. Everybody is trying to figure out how to innovate increase patient compliance and allow caregivers tools to manage the healthcare services,” says Alden. “Between that and the iHealth generation of iPhones, smartphones, iPads, and everybody wanting to have more control over their healthcare knowledge, there’s a huge opportunity for new products.”

In the century of the wearable device, nearly everyone has some type of personal fitness tracker. For the medical device industry, this means a rise in connected health as consumers clamor to track everything from their steps to calories to sleep cycles. With that surge in technology comes an accelerated need for the design and development of interfaces between the technology and the consumer. “This is the most interesting space that a designer could work today. It’s fascinating,” shares Aidan Petrie, Co-Founder and Chief Innovation Officer of Ximedica, a medical product development company headquartered in Rhode Island. “We work between humans and the products they use and make sure that they are more usable, satisfactory and safer.”

Ideation & Concept Design

Despite the incentive for new and better products, the medical device industry remains a difficult niche to break into, due to FDA regulations, enormous amounts of capital required, the need for a high level of specialization, and timelines that span 2–6 years. All these factors contribute to a high failure rate, causing many of these projects to be cancelled before they even reach the prototype stage.

Dassault Systèmes is trying to lower that rate of failure by creating software applications that help these companies better understand and anticipate these challenges from the beginning of a project. The software company released an all-in-one program called Ideation & Concept Design for Medical Device industry solution experience, a cloud-based platform designed specifically to take a team through the entire product development process. From initial ideation and market research to verification and validation, the system tracks deliverables and traceable requirements demanded of the strict FDA and other regulations around this sector. With Ideation & Concept Design for Medical Device, Dassault Systèmes shortens the amount of time it takes to bring a product to market, which is critical in a quickly expanding market where there is no time to waste.

The medical device industry will explode for the next twenty years. It will be the place to be focused as a designer,” says Petrie. “It’s great doing things that change people’s lives, and a product can still look beautiful at the same time.”


Check out Beyond the design of the Medical Device to dig deeper into this topic and access the “Ideation & Concept Design for Medical Device” information kit here, over on Dassault Systèmes’ site:  Ideation & concept design for medical device.

Think you have what it takes to shape the future?

By Alyssa

If you have been following this blog for the past 6 years, or if you’ve just found us – you will know that we at Dassault Systemes are driven by a goal to help people imagine sustainable innovations capable of harmonizing product (the economy), nature (the environment) and life (the people). We believe that “if we ask the right questions, we can change the world.”  We are passionate about helping leaders in a range of industries around the world create innovative ways to advance and optimize our path to the future.

To support our mission, we are excited to announce that we have formed a new community on LinkedIn called Future Realities.  You won’t hear a lot directly from us there. Instead, we created this as a space for anyone interested in kicking around ideas around future trends and technology to come together.  You’ll find posts now from thought leaders from The Economist and the Wall Street Journal, and every day community members are raising their own questions to learn what others out there think.

We would love for you to join us! Share your own questions, or jump into one of the compelling discussion topics already raising interesting points, such as:

Join the Future Realities Discussion



Page 1 of 212
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.