How can technology protect natural resources?

By Alyssa
Share on FacebookTweet about this on TwitterPin on PinterestShare on LinkedInShare on Google+

In recent years, due to growth in places like China and India and increasing urbanization, demand for natural resources has dramatically increased. Natural resources companies are under pressure to provide the materials to feed that growing appetite – while at the same time protecting the environment and local communities where the resources are found. Because these resources can take millions of years to replace, it’s critical to be very aware of where the resources are so that we can understand the available inventory and the costs of extracting them.

Marni millions of years-001
 

In a new video produced by Wall Street Journal Custom Studios for 3DS’s LinkedIn community, Future Realities, Dassault Systèmes Vice President of Natural Resources, Marni Rabasso, explores how technology can address these concerns. Click here to watch the 3-minute video and then jump over to LinkedIn to comment!

It’s a Wrap

By Catherine
Share on FacebookTweet about this on TwitterPin on PinterestShare on LinkedInShare on Google+

Written by Catherine Bolgar


Whether you like them or not, eggs, cheese, mushrooms or shrimp are likely to be part of your future shopping basket—as the raw materials in a new kind of plastic packaging.

New materials promise not only to reduce our reliance on petroleum products such as plastic, they also cut waste. Packaging accounted for more than 75 million tons (or 30%) of solid waste in the U.S. in 2013, while the European Union generates around 79 million tons of packaging waste annually.

However, waste from the agriculture industry is now being turned into biodegradable packaging materials. For example, Kirsi S. Mikkonen, a researcher at the University of Helsinki, is developing packaging films made from hemicelluloses, byproducts of the forestry industry and agriculture.

Cellulose, the part used by industry, makes up only 40% to 50% of wood, while hemicellulose and lignin each account for about 30%. Hemicelluloses can be retrieved from wood chips or, in thermo-mechanical mills, from wastewater.

Dr. Mikkonen converts the hemicelluloses into films that act as an effective barrier against oxygen. Edible films could protect food from drying out or spoiling, or even within food, to separate pizza crust from sauce. By coating paperboard with the films, she can make plastic-type containers.

Hemicelluloses and lignin can also be used in aerogels, which are porous and light but strong.

“When you put an aerogel in water, it acts like a sponge,” Dr. Mikkonen says. “It absorbs water and you can press it out, and it recovers its shape. We could make something like a soft pillow that could absorb moisture or drips from meat, or it could release active compounds and be used as active packaging.”

Innovations in active packaging abound. The Fraunhofer Research Institution for Modular Solid State Technologies in Munich has developed a sensor film that detects molecules called amines that are released when meat or fish starts to spoil. As amines build up, the sensors turn from yellow to blue, indicating the level of spoilage. Many companies now sell labels and films that keep fruits and vegetables fresh by absorbing ethlyene.

Egg whites could provide another form of active packaging. Alexander Jones, a researcher at the University of Georgia in Athens, Georgia, mixed the egg-white protein albumin with glycerol to create a plastic with antibacterial properties.

Albumin plastic could be used for food packaging, to decrease spoilage. It could also be mixed with conventional plastic to add antibacterial properties to medical products, says Suraj Sharma, associate professor at the University of Georgia’s College of Family and Consumer Sciences.

Another reason to mix in conventional plastic is that albumin plastic is too brittle to be used alone for, say, a catheter tube, which needs flexibility, Dr. Jones says.

He also tested plastics made from soy and whey proteins. Soy proteins had no antibacterial properties—“it actually fed bacteria,” he says. Whey proteins mixed with glycerol made antibacterial plastic, but whey plastic minus glycerol acted like soy-based plastic, promoting bacteria growth.

The protein-based plastics have other advantages. They compost quickly, and the manufacturing process uses lower temperatures than for petroleum-based plastics, thereby saving energy. Whey, a byproduct of cheese processing, requires treatment before disposal, so diverting it into plastics would be a boon.

For now, egg whites are far more expensive than polyethelyne. But Dr. Jones believes that we might tap waste streams to get cheaper raw materials.

Egg producers have eggs they don’t ship for various reasons,” Dr. Jones says. Using those “would reduce waste and also not compete with food as an end use.”

Shrimp shells are another waste source that can be turned into plastic. Harvard University researchers have turned chitin, a polysaccharide found in crustacean shells, into a strong, transparent material called shrilk, which can be used to make plastic bags, packaging and even diapers.

Meanwhile, Ecovative, a packaging company in Green Island, N.Y., uses mushrooms as the key ingredient in its compostable packaging. The root structure of a mushroom, called mycelium, acts like a glue. A mix of mycelium and agricultural byproducts is molded into different shapes, replacing styrofoam for example.

Packaging today is essential for society to function,” Dr. Mikkonen says. “We need packaging to deliver food from the maker to the retailer and then to the consumer. But it produces lots of waste. It’s really important to develop some biodegradable alternatives.”

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion.

Photos courtesy of iStock

Rebuilt to Last

By Catherine
Share on FacebookTweet about this on TwitterPin on PinterestShare on LinkedInShare on Google+

Written by Catherine Bolgar

Nearly 42 million tons of electric and electronic equipment, 5.9 kilograms per person, were thrown away world-wide last year. But several initiatives now aim to reduce that waste by helping people fix their appliances and devices.

People throw away lots of items that aren’t garbage yet, but simply need to be repaired. The problem is people don’t know how to do that anymore,” says Martine Postma, who launched the first Repair Café, in Amsterdam in 2009.

“But I noticed that in every community there are still some people who do know how to do it. In many cases they are older or retired or have lost their jobs—these people are not the center of attention in our society, but they do have skills.”

The Repair Café Foundation currently has more than 700 local organizers in 18 countries running their own Repair Cafés where people can bring broken appliances and be shown how to fix them by volunteer experts, for free.

“People learn something about repair,” Ms. Postma says. “They see how to open their item, what it does. Often it turns out items aren’t very broken. It’s just a wire or a screw that came loose, or maybe it needs to be cleaned or have the dust blown away. Then people see that repair is a real alternative to throwing away or buying new. Also, it’s fun.”

Small items, such as fans, cameras, vacuum cleaners, coffee makers, toasters, microwaves or electronic toys comprise the biggest category of e-waste, totaling 12.8 million tons, according to the U.N. And the amount of e-waste is growing by 4% to 5% a year.

The European Commission has set minimum targets to recover 85% of appliances, equipment and devices from landfill waste flows, and to prepare 80% for re-use or recycling.

iStock_000028806034_SmallHowever, it isn’t always easy to fix broken objects. Besides lacking know-how, people seldom have the appropriate tools. In some communities, tool libraries lend out an array of equipment, while at Repair Cafés, the repair gurus usually bring their own. “Often, fixing things is their biggest hobby, and they have the right tools,” Ms. Postma says.

They have their work cut out. “Many products have been designed to last only a few years and then be replaced with something new,” she says. “If that’s your idea, then you don’t need to design a product in such a way that it can be opened easily. Or use screws that people have the right screwdriver for. Or share information, with a manual.”

Kyle Wiens searched in vain for a manual after he broke his laptop. “I tried to take it apart, but it was hard to get open,” he says. “I managed to get the computer apart and put it back together, but it wasn’t quite right. I knew that if I had had some insight as to how it was put together, I would have been able to repair it.”

The experience led Mr. Wiens and Luke Soules, in 2003, to co-found iFixit, which writes manuals for products that lack such information. The iFixit staff disassembles products to reverse-engineer repair instructions. They also get help from the repair community, with members posting photographs and explanations to the wiki-based site, to “teach each other along the way,” he says.

iFixit’s advice is free, but the company sells spare parts and specialized tools. Indeed, Mr. Wiens sees parts and service, rather than planned obsolescence, as the future for manufacturers. “If you’re buying a power drill for €25 ($27.80), it’s probably not going to last very long,” he says. “The manufacturer is probably planning on selling you another one.” High-end construction tools, by contrast, are made to last and to be fixed, “because contractors are very demanding,” he notes.

We have a different relationship with cheap, replaceable objects compared with expensive items. With the former, “you’re more or less a slave to the product—you’re no longer master of the product—because you don’t know how it works or how to fix it,” Ms. Postma says. “You only know a new one is available. It is not sustainable to do this. Repair needs to get back into everyday life.”

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion.

Photos courtesy of iStock



Page 1 of 512345