Spotlight on Lionel Lambourn of Syntegrate: Looking Beyond BIM to Improve Construction Efficiencies

By Akio

Admiralty Station, Hong Kong

Lionel Lambourn, director of Syntegrate, first gained familiarity with the possibilities afforded by BIM during his studies at the Southern California Institute of Architecture, before putting those possibilities to use at Gehry Technologies. During his tenure there, he helped set up the company’s Middle Eastern branches, using BIM tools in real-world applications.

Lionel L. Lambourn, Director, Syntegrate

Lionel L. Lambourn, Director, Syntegrate

It was that firsthand exposure to the ways that technology can boost efficiency in the construction process that led Lambourn to launch Syntegrate. The consultancy’s name was coined to describe the company’s focus on “synthesizing disciplines and integrating technologies.”

Why integrated technologies? As Lambourn quite simply explains, construction is a highly integrated discipline. It requires the work and knowledge of multiple disciplines to create something so complicated as a building, but it’s often at the intersection of trades where problems arise.

Today’s advanced software technology can easily be leveraged to ease the coordination required among building professionals and smooth the transitions of trades and materials.

Click to TweetClick to Tweet: “#Construction requires multiple disciplines;
problems arise at intersection of trades”

“In this day and age I see integration of technology as the best way to address some of the accepted, in-built assortments of waste and inefficiency in the construction industry,” Lambourn says. “Our mission at Syntegrate is to leverage technology to realize our built environment more appropriately, more efficiently and more sustainably.”

An Environment of Waste

Waste and inefficiency, Lambourn says, are the single biggest challenges faced today by the architecture, engineering and construction industry.

“I believe waste and inefficiency overwhelm all the other issues and encapsulate all the challenges that we face in the industry,” he says. He offers an example to put this into perspective:

“By some reports, worldwide construction and buildings consume 40 percent of the world’s energy. However, we can conservatively estimate from available data that 20 percent of construction ends up as waste. To make these numbers more tangible, let’s put these numbers in the context of national GDP—worldwide construction is comparable to the size of China’s economy and each year the entire output of Spain is wasted.”

Click to TweetClick to Tweet: 20% of #construction ends up as waste.
How can we do better?

Lambourn sees much of this waste and inefficiency could be solved by better coordination among contractors — a collaboration that could be easily facilitated by the integration of technology such as BIM.

A Tool for Coordination and Visualization


Admiralty Station, Hong Kong

Lambourn offers as a case in point Syntegrate’s work on the Admiralty Station, part of the South Island Line (East) Project, which will become the first four line interchange in Hong Kong.

The ongoing underground excavation and building work, which poses its own inherent risks, is being undertaken adjacent to the existing Island Line and Tsuen Wan Line, and the busy existing Admiralty Station – all within a densely populated area with many other underground structures in close proximity.

MTR Corporation, the owner of the project, recognizes the return on investment that they stand to gain from the comprehensive implementation of BIM on their many Projects, from construction through to operation.

The general contractor on the integrated Admiralty Station—a joint venture of Kier, Laing O’Rourke and Kaden (KLKJV)—were early adopters of BIM technology and are certainly at the forefront of the global construction industry in the implementation of BIM on their projects.

For Admiralty, the joint venture has chosen Dassault Systèmes’ 3DEXPERIENCE Platform as their BIM platform. Syntegrate works closely with the joint venture to refine its construction sequencing, from the coordination of excavation to concrete pours to formwork erection. By carefully scheduling each step, the general contractor has been able to execute each phase of this highly complex project with minimal rework, which in turn reduces schedule delays.

Moreover, the solution provides the joint venture with a visualization of the complicated underpinning work required to support the existing rail lines and platforms which remain in operation throughout construction.

Repeated simulations of the onsite work helps the construction team to effectively “practice” and perfect its planning, Lambourn says, so that when workers move onsite they are able to perform their work correctly the first time. This allows the joint venture to realize a dramatic reduction in waste of time and materials.


Admiralty Station Rebar Junction

Broadening Technology Solutions

As projects become more complex, Lambourn believes that the use of BIM technology is a strong first step toward improving the collaboration of architecture, engineering and construction professionals. And he sees many opportunities to bring other technologies to bear, especially given the pace at which new technological advancements are happening.

“These days, we need to broaden our focus of technology to consider technologies such as 3D laser scanning, 3D printing, and even the use of drone technology to improve the way that a building is delivered,” Lambourn adds.

Click to TweetClick to Tweet: “We need to broaden our focus of
#technology for #AEC”

On the Admiralty contract, KLKJV utilizes 3D laser scanning extensively to capture the as-built conditions of the tunneling works at a level of precision that was not available several years ago and that is unachievable by orthodox survey methods.

“When the laser scan is introduced into the BIM platform, we can determine, exactly, how much over-break (excess excavation) has occurred and where any areas of under-break (insufficient excavation) exist. By repeated laser scanning as they proceed, the joint venture can optimize their works so that they achieve just the right amount of over-break with no areas of under-break, ensuring the highest levels of construction quality.”

Using integrated technology is but one solution to what Lambourn sees as a two-pronged approach to solving construction inefficiency.

Realistically, Lambourn says, “We would be naïve to think that the industry alone could tackle such a large problem of waste and inefficiency. Something like that has to come not only from the industry but also from a governmental level.”

Lambourn suggests that governments may need to step in to reward the reduction of waste and efficiency, ensuring this becomes a market factor that the industry must build into the way it does business.

Case in point: Lambourn notes that the industry still relies heavily on the delivery of 2D, paper drawings for contractual permissions.

“A building could be done completely paperless and much more efficiently through a 3D environment. However, governments need to come to the table and recognize that, and change the way that the legislation around the procurement of buildings is formulated so that there is not a real and contractual reliance on paper drawings.”

That doesn’t mean that architecture, engineering and construction practitioners should sit back and wait for governments to do something, however.

By becoming involved with organizations promoting and standardizing the use of BIM, the industry can help determine future technology requirements. Lambourn expects governments initiatives will spread more widely.

For example, the UK government has committed to what they call a “Level 2” BIM implementation by the year 2016 and several months ago, the strategic plan for “Level 3” BIM implementation was released under the title of “Digital Built Britain.”

Click to TweetClick to Tweet: Lionel Lambourn of Syntegrate:
Looking Beyond #BIM to Improve #Construction Efficiencies

Related Resources

Syntegrate website

Collaborative, Industrialized Construction from Dassault Systèmes

Game-changing graphene: the amazing properties of a single-atom layer of carbon

By Catherine

Written by Catherine Bolgar


Step aside, silicon. There’s a new substance that promises to revolutionize medicine, industry, water treatment, electronics and much more. That substance is graphene—a single-atom-thick layer of carbon, a millionth of the width of a human hair.



The world’s first two-dimensional material, graphene is potentially plentiful (carbon being the sixth most abundant element in the universe) and cheap. And it possesses amazing qualities and potential uses:

It’s transparent, but conducts…

electricity and heat. Most good conductors are metals such as copper, which is opaque and quick to heat when electricity passes through. But they are prone to hot spots, which form around defects and cause electronic devices to fail. Graphene, by contrast, transfers heat efficiently. “It’s a good alternative to copper,” says Nai-Chang Yeh, professor of physics at California Institute of Technology. Indeed, electronic equipment may in future use graphene-coated copper interconnections to prevent overheating or wear and tear.

It’s light and flexible, but it is…

Hands of scientific showing a piece of graphene with hexagonal molecule.200 time stronger than steel. The carbon-to-carbon bond is very strong, says Rahul Nair, Royal Society fellow at the University of Manchester. In addition, graphene’s carbon atoms are arranged in a tight, uniform honeycomb structure, which is able to bear loads and resist tearing. A membrane of graphene could withstand strong force without breaking, says Dr. Yeh. It may someday be used in aerospace, transportation, construction and defense.

It’s a superlubricant

“If you take one piece of flawless graphene and put it on top of another, and slide one against the other, there’s almost no friction,” says Dr. Yeh. Coating machines parts with graphene could minimize unwanted friction, providing industry with countless applications.

It’s impermeable…

Graphene’s honeycomb structure is too tight for any molecules to squeeze through. “If you have graphene on metal, it’s perfect protection, because other molecules in the air cannot penetrate that honeycomb hole,” says Dr. Yeh. Indeed, Dr. Nair has dissolved graphene oxide in water to create a paint-like film that can protect any surface from corrosion. This graphene paint could be used by the oil and gas industry to protect equipment against saltwater, or by pharmaceutical and food packaging firms to block out oxygen and moisture, thereby extending their products’ shelf life, says Dr. Nair.

…but can also be permeable. A single-micrometer-thick film containing thousands of layers of graphene oxide has nanosize capillaries between its layers, which expand when exposed to water. However, those capillaries don’t expand when exposed to other substances. This is unusual because a water molecule is bigger than a helium or hydrogen molecule. However, water behaves differently when it’s within the confined space of a nanometer, moving rapidly through the graphene oxide nanocapillary. By contrast, salt that is dissolved in the water is blocked. One use for this, says Dr. Nair, could be water or molecular filtration.

It’s a chemical contradiction

A sheet of graphene is inert, but its edges are chemically reactive, says Dr. Yeh. A little graphene flake has a large perimeter relative to its area, allowing for more reaction. These flakes could be used to remove toxins from water.

It can be magnetic

MagnetThe zigzag-shaped edges of graphene have magnetic properties.“People imagine that you will be able to use graphene sheets as a magnet that can pick up iron at room temperature,” explains Dr. Yeh. That something all-carbon can be magnetic is “amazing,” she adds. Coupled with its electric conductivity, graphene’s magnetic properties may open up all sorts of applications in spintronics and semiconductors.

Graphene’s potential may be extraordinary, but how easy is it to create? It was first isolated in 2004 at Manchester University by Andre Geim and Konstantin Novoselov who won the 2010 physics Nobel Prize for their work. They arrived at graphene by using adhesive tape to peel off ever-thinner layers from graphite, a process subject to continual improvement. In one common method, copper is heated to 1,000 degrees Celsius, near its melting point. Methane gas, comprising carbon and hydrogen molecules, is then added, and the copper rips off the bond between the two molecules, dissolving the carbon into the copper and letting the carbon “grow” on the surface, Dr. Yeh explains. The result is a sheet of graphene.

David Boyd and Wei-Hsiang Lin, working with Dr. Yeh at Caltech, however, found that what counts most is not heat but clean copper.  Copper oxidizes quickly in air and so has a thin layer of carbon oxide on its surface. They use hydrogen plasma, which has “gas radicals that behave like erasers and clean up the surface of the copper,” Dr. Yeh explains. The process allows graphene to grow in five minutes at room temperature.

Most importantly, this method could be scaled up to produce industrial amounts of high-quality graphene—a huge step towards realizing its true potential.

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. 

For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion.


Photos courtesy of iStock

Spotlight on buildingSMART: Driving an open approach to design and construction evolution

By Akio

When Richard Petrie joined buildingSMART as chief executive officer in 2013, he took on the goal of driving the standards-writing organization’s growth — in order to drive change across the entire architecture, engineering and construction industry.


Richard Petrie, CEO of buildingSMART

Having worked in construction as both contractor and client, Petrie has seen firsthand the frustrations of a slow-to-evolve architecture, engineering and construction industry. From within buildingSMART — a not-for-profit organization that has been working to standardize the language and processes of BIM (Building Information Modeling) users since 1995 — Petrie has observed an increasing emphasis from several European governments on improving construction efficiency.

“All of those governments have very serious social needs that they have to fulfill with increasingly limited budgets,” Petrie says. “Completing these projects in the best way possible is very important, and you can’t do that if you don’t have accurate and clear data.”

buildingSMART is setting out to provide that data by leading the entire building industry into the digital economy.

Overcoming Fragmentation

There are two key challenges in architecture, engineering and construction industry that buildingSMART is seeking to address.

First is the fragmentation of the supply chain. As designers, builders and owners expand their focus to the entire life cycle, it becomes increasingly important to understand how each component and system impacts others. While savvy suppliers are integrating vertically, providing inter-related products, services and knowledge, many designers are finding the information they need through sharable information made possible by BIM.

Second, Petrie finds, construction clients are rarely well informed about the construction, building management and asset ownership process, which means they are also fragmented. For example, the efficiency to which buildings are designed isn’t always met in operation. This is in part because product data isn’t easily transferred from designers and builders to owners and facility managers.

“Altogether, this disjointed relationship with clients and the fragmentation of the supply chain is a great drag on the transformation of the industry,” Petrie says.

Tweet: The #AEC industry is plagued w/ fragmentation & miscommunication. @openbim & @buildingSMART offer a solution. @3DSAEC to tweet: “The #AEC industry is plagued w/ fragmentation &
miscommunication. @openbim & @buildingSMART offer a solution.”

 Creating a Universal Approach to Construction

buildingSMART describes openBIM as a “universal approach” to the collaborative design, realization and operation of buildings based on open standards, such as its IFC family of standards. This approach allows all project members to participate in modeling, regardless of the software tools they use; it creates a common language for widely referenced processes; and it provides one system for housing asset data over its entire life-cycle.

Petrie sees openBIM as a solution to the industry’s fragmentation challenges and buildingSMART as a path to the significant opportunities for improvement in building and infrastructure cost, value and environmental performance.

“I believe those opportunities are only truly available with open international standards and, in order to create those open international standards, a neutral entity for the development and promulgation of those standards is needed,” Petrie explains. “That is the role buildingSMART International is taking on.”

With its newly defined vision, the volunteer-driven organization has made major headway in the past year. From creating new standards to defining data to the harmonization of processes across the supply chain, the group has demonstrated real progress and results.

The Push for Interoperability

The group’s push for progress aligns with demand from several governments. As a case in point: Petrie indicates the UK government’s push for interoperability as an example of where openBIM is heading.

While the UK has had requirements for open data since 2012, in 2016 the government will formally launch a program in which procurements must use BIM Level 2 documents.

This set of methodologies is designed to introduce the construction supply chain to trading and operating in a data environment, allowing the government to focus on the strongest leaders and drive value for its spending programs.

It’s a demand driven not by technology, Petrie says, but a cultural shift resulting from seeing real change in how each construction dollar is spent. “That is the reality that will provide the real driver to ensure that this program moves forward the way we hope it will,” he says.

Petrie adds that thus far the group is achieving its predicted targets in the UK, and work is underway for a Level 3 program slated for 2020-2025.

Tweet: Demand for #BIM L2 is a result of seeing change in how each construction dollar is spent @buildingSMART @3DSAEC #AEC to tweet: “Demand for #BIM L2 is a result of
seeing change in how each construction dollar is spent”

The Smart Future of Building

To expand the organization’s work, Petrie is seeking to build a community of experts to ensure that future standards accurately reflect the needs of real-world users. Volunteers work at both the international and chapter level, in an integrated process for developing new standards and deploying them into user communities.

buildingSMART graphic_03.2015

Membership in buildingSMART International is open to companies, government bodies and institutions from around the world. Dassault Systèmes joins buildingSMART as an International Member, with full voting membership rights on the new Standards Committee and membership rights with buildingSMART chapters.

The company joins other leading proponents of openBIM that recognize the benefits from openBIM can achieve the greatest impact and momentum by working together in a common community.

Members benefit from the collective activities of other members locally and internationally, and play an active role not only in identifying issues, but also in the development of solutions.

The nature of buildingSMART is that it is a voluntary organization where solutions are developed on a mutually supportive co-developed basis, and so we need members to be active in our community,” Petrie explains.

Petrie acknowledges that it will take time to develop and communicate the organization’s mission, but, he adds, “The changes that we are hoping will be available as a result of these new standards will not only affect the technical communities, but will have implications for the way in which companies function.

Tweet: Spotlight on @buildingSMART: Driving an open approach to design and #construction evolution @3DSAEC @Dassault3DS #AEC to tweet this article.


Related Resources:

Dassault Systemes Architecture, Engineering and Construction Solutions

buildingSMART website

White Paper: End-To-End Collaboration Enabled by BIM Level 3

Page 1 of 612345...Last »