The Reimagining of Cities

By Alyssa
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

clicktotweetClick to Tweet: The Reimagining of Cities | #VirtualSingapore
#3DEXPERIENCECity @3DSAEC

The last half-century has seen massive growth in urban populations. This trend is expected to continue: experts predict 6.5 billion people will live in cities by 2050. And with all cities covering less than 3% of Earth, overpopulation, overpollution and overburdened infrastructure create significant challenges.

clicktotweetClick to Tweet: “Cities are the most complex products that humans
make” – @BernardCharles @Dassault3DS #urbanplanning

To address this will require a radical rethinking of our relationship with, and to, urban environments, as well as a shift in mindset within the architecture, engineering and construction industries.

Whether you live in a city or a different type of area, most likely you’ve thought about things you wish you could change. Maybe you think there should be a traffic light in a place that is missing one. Or an easier way to find a parking space, or a new place to live. Technology is now allowing everyday citizens to have this type of influence, and Singapore is leading the way.

Check out this 1-minute video to get a taste of what is happening in a project called Virtual Singapore:

In today’s world, people are constantly generating data. If planners can harness and analyze that data, they can create intelligent cities that better meet the ever-changing needs of citizens.

When completed in 2018, users of Virtual Singapore will be able to map and analyze big data points to simulate scenarios and solutions for everything from disaster evacuation to finding an apartment.

Virtual Singapore will help inform people about where to get the best mobile phone coverage, or allow disabled people to virtually plan an optimal route before venturing out into the streets. Firms can use the information to create better buildings – not just by adding amenities for those living or working in them, but even to architect a specific design to improve air flow throughout the city. Data can also help better identify sun patterns to create more sustainable green spaces. And all of this can be tested (and retested) virtually to help get it just right.

clicktotweetClick to Tweet: Take an in-depth look at the
future of #cities | @3DSAEC @CNBCCatalyst

Dassault Systèmes, in conjunction with CNBC Catalyst Content Studio, created an in-depth look at the future of cities, including the need to find equilibrium between government, private business and the public to make these areas successful.

The content – which includes interactive graphics, videos and articles – also explores how 3D printing is being applied to quickly build apartment buildings to meet the burgeoning urban populations.

Click here to get your imagination going about what tomorrow’s cities might look like and how people like you can participate in the process.

Related Resources

CNBC: The Reimagining of Cities

3DEXPERIENCECity

AEC Industry Solution Experiences from Dassault Systèmes

Intelligent Construction: Transforming the Industry in the Digital Age

By John S.
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

Excerpted from the keynote address, “Strategic Business Transformation for the Building & Construction Industry,” delivered to the BIM-MEP AUS Construction Innovation 2016 Forum on August 4, 2016 in Sydney, Australia.

clicktotweetClick to Tweet: Intelligent Construction: Transforming
#AEC in the Digital Age | @bimmepaus @3DSAEC


John Stokoe CB CBE Head of Strategy EuroNorth, Dassault Systemes

John Stokoe, CB, CBE, Head of Strategy EuroNorth, Dassault Systèmes

The fourth industrial revolution – the Digital Age – is creating the drivers to transform the Construction Industry as it seeks to exploit the significant advantages to be derived from the effective and efficient use and management of data.

Industry-leading technology, developed for other sectors, is exponentially improving value and efficiency, and can be employed to propel Construction into the digital age.

This impacts not only the Construction Industry but also the logistic supply chains which support it, improving capability and skills, and contributing to the economies and construction potential of the countries involved.

The considerable amount of data which is created during the design, development, construction and utilization of the built asset, if properly configured and integrated, can be harnessed to drive value, cut costs and waste, and used to create a digital asset. This data-driven digital equivalent, when used by the end customer, can provide a dynamic platform on which to manage legacy, sustain the present and plan the future.

Effective configuration management will drive operations and ongoing maintenance, leading to an increase in the return on equity.

With Singapore as a reference, cities across the globe are getting smarter with data sources and multiple sensors connecting people, services and things, so they can engage with each other.

Bringing together infrastructure, social capital and technology fuels sustainable economic and social development, with the aim of providing better lives and urban environments for all. Cities are not just trying to be smarter, but are using technology to engineer their futures.

Cities are on an upward technology path. The construction industry, however, is not taking the same dynamic trajectory.

clicktotweetClick to Tweet: “#Cities are on upward technology path;
#AEC is not taking same dynamic trajectory” -@stokoe_john

Construction itself is often an outdated, dangerous, and low-productivity industry. The Industry must start driving value and keeping pace with the development of future cities.

But steering the Construction Industry in the right direction has challenged planners for decades. This is especially true in the UK, which lags behind many countries and much of Asia for modern building practice.

Process models for construction have remained largely the same for hundreds of years.

As a stark example, though materials were very different, the construction techniques employed to build the 72-story Shard tower in London were not that different from those employed to construct St Paul’s Cathedral nearly 400 years ago. (However, St Paul’s took 35 years to build, the Shard three, so some things have improved!)

Essential transformation is emerging.

  • Automated manufacture of building components is leading to lower construction costs, improved quality, and significantly reduced waste.
  • On-site work consists of assembly of quality-assured parts, each guaranteed to be fit for purpose.
  • 3D technology has made significant inroads into architectural design and fabrication to excellent effect.

But process modeling at the construction phase is virtually non-existent. When we get it right, we will see Building Information Modeling literally take on new dimensions, at the design stage, during construction, and ultimately in building management, enabling built assets to be managed economically and effectively using real-time sensor data fed onto the platform; this breathes life into the digital equivalent.

Using shared 3D experiences to simulate cities and developments reveals potential problems that may not be seen by any other means. Overlaying data reveals new views. And it is possible, with this technology, to predict events in transport systems and hubs, in public services, in utility provisioning, and in security.

Seamlessly linking the system to financial software allows cost planning and budgetary predictability. By this means, potential problems and their outcomes can be observed, costed and fixed before they occur.

A significant business opportunity appears as this scientific approach is extended into the supply chain.

When collaborative practices, which have powered other industries into innovation, are applied to building, they produce stunning results.

A construction supply chain, sharing closed data, can have a major positive impact on the time and cost to deliver a project, adding value to the overall process.

clicktotweetClick to Tweet: “Sharing closed data w/#AEC supply chain = major impact
on project time & cost” @stokoe_john @bimmepaus @3DSAEC

Many building projects overrun and outspend their budgets by more than 20% and end in expensive and wasteful litigation.

Between concept and delivery of a finished building lie the stages of design and engineering, contracts, bids and awards, fabrication and construction.

Each stage is fraught with risk, and stakeholders’ risk in a building project of any kind can be more than financial. Buildings define their locations and neighborhoods; people have emotional attachments to them.

Much of this risk can be reduced when clients, architects, contractors, communities and stakeholders work on the same current unified knowledge platform, where guesswork and misinterpretation are removed, and open yet secure collaborative integration is a given.

Litigation at, during, or after a construction project is commonly the result of poor communication between systems and people.

Errors with building components and services are expected, and usually occur, but are absolutely avoidable.

Simply unifying the change order system on a building project allows people to work collaboratively. They have access to the current status of the building and its information. This enables better informed strategic and tactical decision making at all stages and virtually eliminates errors caused by wrong or superseded instructions being acted upon.

In summary, technology can forever change the popular perception of the Construction Industry as one which is labor-intensive, wasteful, costly, and financially and physically risky.

A dynamic, effective, high-value Construction Industry will attract investment and become an economic driver.

clicktotweetClick to Tweet: “An effective Construction Industry can be
an economic driver” -@stokoe_john @3DSAEC #AEC

Effective configuration management will drive operations and ongoing services and maintenance, leading to an increase in return on equity, and the ability to compete more effectively in a demanding industrial and economic climate, leading in turn to national economic growth able to withstand global economic shocks, as well as expanding job opportunity and stimulating economic activity and increased GDP growth.

Integrated and configured data on a dynamic business experience platform gives the politician, the business leader, the developer, and the people who are forging global and national economies, a window into their world – a window into what might be as they shoulder the legacy of the past, manage the reality of the present, and shape the vision of the future.


MEMKO and Dassault Systèmes' Exhibit at the 2016 BIM-MEP AUS Construction Innovation Forum

MEMKO and Dassault Systèmes’ booth at the 2016 BIM-MEP AUS Construction Innovation Forum

clicktotweetClick to Tweet: Intelligent Construction: Transforming
#AEC in the Digital Age | @bimmepaus @3DSAEC


Related Resources

Collaborative, Industrialized Construction

Design for Fabrication Industry Solution Experience: Connect Your Design Data from Concept to Delivery

Optimized Construction Industry Solution Experience: Eliminate Waste and Increase Profits

New frontiers and costs of recycling

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

Written by Catherine Bolgar

open dumpster full of trash

Are we recycling all we could? Organic waste, such as food scraps and yard trimmings, accounts for between a quarter and a third of the solid waste generated in cities—the largest single municipal waste stream, according to Eric A. Goldstein, waste expert at the Natural Resources Defense Council in New York.

If you had to identify one key area of growth for recycling, it would be organics,” he says.

Organic waste in landfills becomes mummified or decomposes anaerobically (i.e. without oxygen), producing methane, a greenhouse gas whose impact on climate change is estimated to be 25 times greater than that of carbon dioxide.

Composted organic waste though becomes a natural fertilizer that helps soil retain moisture and hold carbon. A University of California Berkeley study found that a single application of compost led to a metric ton of carbon capture and storage per hectare annually, for three years.

However, “composting if done well isn’t cheap,” says Glenda Gies, principal of Glenda Gies & Associates Inc., an Ontario-based recycling consultancy. “It requires the right temperature, moisture levels and bacteria populations.”

There’s also the question of who’s responsible for the recycling. With plastic or electronics products, the brand is usually identifiable, even on discarded goods. The manufacturer may then be legally required to recycle them. But by the time organics become waste it’s no longer clear who the brand owner is, and recovery costs then pass to the municipality, consumer or business, “who have been reluctant to pay,” Ms. Gies says.

This hasn’t deterred some city and state authorities from taking a lead. San Francisco has introduced mandatory separate collection of compostable materials, which applies to all residences and businesses, says Kevin Drew, residential and special projects zero-waste coordinator at the city’s department of environment. Massachusetts banned food waste disposal by companies in 2014, sending organics to 49 processors.

Once there, organic waste is processed into methane through digesters (like at sewage treatment plants). And unlike landfills where the methane escapes, the digesters trap it and convert it into natural gas, while the residue is turned into compost. San Francisco and its service provider are building digesters, with the resulting gas used to fuel collection and transfer vehicles, Mr. Drew says.

There’s complete recovery of the energy and compost value in the waste,” he says. “I would argue that this program will be coming to every city in the world.”

colored clothingOther materials also have strong recycling potential. Only 15% of used clothes, towels, bedding and other textiles in the U.S. is donated or recycled, according to the Council for Textile Recycling, with the rest ending up in landfills. In the U.K., about 40% of clothing is re-used or recycled. But more can be done.

“There’s an enormous amount of textiles that are recoverable as clothing,” says Mr. Drew. “There are markets around the world that will take that material. We’re on a quest to recover more textiles.

Cost is key. With traditional recycling streams, such as paper, plastics and glass, changes in technology and commodity prices affect the willingness to recycle.

“Companies want to recycle to save money,” says John Daniel, president of Federal International Inc., a St. Louis recycling firm. “In general, companies will increase recycling to the point where it costs them money, and then they stop.”

Recycling bin with glassConsider glass recycling. When collected along with other waste materials, broken glass has to be sifted out at sorting facilities. This may have been worth doing when glass prices were high, but today, “at many facilities, it’s not cost effective to separate out that glass. A significant amount of glass put in recycling doesn’t get recycled,” he says.

Similarly, “when the price of oil was much higher, carpet was able to be recycled,” he notes. “Now it is almost impossible to recycle without the cost being higher than landfilling. The cost of recovering, transporting and processing the material is significantly higher than the value of the material.”

Virgin products may seem cheaper, Ms. Gies says. But if one were to factor in environmental costs—reflected in, say, greenhouse-gas taxes or obligations on manufacturers to recycle returned products—the resulting higher price might be more realistic, and potentially uncompetitive.

“The industry naturally will recover all material demand, provided it is cost effective,” Mr. Daniel explains. “As the price goes up, then recyclers have the ability to dive in deeper and start recovering higher-cost material. The best way to increase recycling rates is to improve the demand for products made from recycled materials. Our industry will take care of filling the supply.”

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of iStock



Page 1 of 212