The Future of Package Design – Beyond the Box

By David
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

Package design technology is on the rise, and so are its expectations to create and deliver.

Meeting consumer demand used to mean creating the best product available. But times have changed. Today’s consumers aren’t as easy to please. They’ve come to expect sustainable and eco-friendly packaging in their retail products, as well as a commitment from brand manufacturers to share these environmentally-conscious values.

As Consumer Packaged Goods and Retail companies shift greater focus towards rethinking packaging design, they need answers to meet these growing demands for sustainability. Brand manufacturers must now create packaging designs not only with increased functionality and greater efficiency, but with stronger shelf performance.

To do this, they’ll need to explore innovative avenues for devising new packaging design strategies. But before they can even think about to incorporate new design features, CPG and retail companies must have their design processes down to a science, or they’ll quickly find themselves grouped with the statistical majority of package failures.

Today’s plastic bottle takes 450 years to decompose. Could tomorrow’s bio-plastic do it in 5?

As if appealing to consumer values and contributing to the environment wasn’t enough, packaging designers concentrating their efforts on sustainability have been quick to discover the potential economic benefits in using renewable materials. For example, manufacturers have found that minimizing the use of corrugate cardboard in packaging has potential to reduce shipping costs, decrease the potential for product damages, and even save shelf space.

The solution for recyclable package designs calls for optimizing resource management and energy consumption, while integrating reusable elements. Packaging suppliers and design agencies need sophisticated research tools to manage these complexities. To avoid falling into a tangled process of redundant rework and organizational disconnect, inventing the next packaging breakthrough requires the means to navigate the design cycle – and it starts with the ability to control what you create.

Can package designers do more with less?

Today, we can make 3 tin cans with the same amount of material it used to take to make just one.

Packaging manufacturers have made this possible by learning to innovate through re-creation – taking existing elements and exploiting previous design assets, then applying them to new concepts. But testing the feasibility of a physical prototype takes time and resources many packaging innovators don’t have. And with 50 percent of new packaging performing worse than what its replacing, innovators need every tool available to make sure their end product functions the way it should.

Did you know:

Integrating design, engineering, and simulation can cut design time 50 percent and lower material costs 30 to 50 percent while improving sustainability and consumer delight?

What package designers need is an application built around the innovation process from “concept to shelf.”  In order to apply existing packaging concepts into new geographies with minimal investment of time and resources, design teams need to be able to collectively assess multiple sources of data and share all of their digital assets across a unified virtual dashboard. Instead of relying on other agencies and suppliers for what they need, the ability to instantly access and reuse previous designs, labels, and materials, expedites the innovative design process and increasing productivity.

To accelerate expansion into new markets, packaging designers must be able to adapt designs for line extensions, new sizes and local preferences quicker than competition. From executing change order requests with “where used” analyses, to simulating mold, manufacturing, and package performance, synchronizing product data across a single platform allows package designers to bring products to market faster and more efficiently.

By integrating design, marketing, engineering, and manufacturing systems across a single business platform, packaging manufacturers can bridge the gaps responsible for undermining the innovation process and avoid costly rework, delays, quality issues and recalls.

And like all innovators seeking to eliminate uncertainty, package designers looking to ensure their new initiatives deliver the results they want know that when it comes to concept development; seeing is believing.

Could we see our creations before we craft them?

Brand manufacturers have no more than 8 seconds to “wow” a potential buyer. With more than 40,000 different products on retail shelves, brand manufacturers simply can’t afford to let their products go unnoticed. To ensure packaging innovations effectively communicate value and stimulate customer engagement, CPG and retail companies must be able to uncover true shopper insights in the context of a realistic retail environment.

This is why brand manufacturers, design agencies, packaging suppliers and artwork designers need a virtual template for integrating visual creation, digital comparison, system of record, proofing tools to eliminate errors throughout the packaging design cycle. Using a cloud-based technology, all parties throughout the supply chain can instantly monitor individual contributions made onto each stage of the design process to ensure brand consistency across multiple product lines.

Creating and testing new packaging concepts virtually is critical in guaranteeing product shelf success. This virtual interface provides stronger visualization and design sharing, allowing technical packaging engineers to collaborate with industrial designers. Together they can identify optimal design strategies, explore package feasibility from conception, and select the best packaging candidates based on consumer feedback and manufacturability. With the means to image how design concepts will look alongside competition, brand manufacturers can ensure all key design elements of the “perfect package” are translated on the shelf, without losing sight of the finished product.

If brand manufacturers wanted to increase design performance while beating the clock of competition – could they do it?

The answer is yes. And it starts with visibility.

Brand manufacturers are realizing more and more every day that when it comes to the package design world, creating the box starts with thinking beyond its walls. But collaboration is a team effort. And with the added complexities of consumer demands and industry standards, brand manufacturers wanting to thrive in a competitive marketplace need to be able to see the big picture. They need a partner that not only understands the cycle for inventive package, but can virtually lead them throughout the process.

Consumer Product Goods and Retail companies need to appeal to the mass market, while addressing a social agenda of implementing sustainable packaging design methods along the way. Brand manufacturers who can succeed in creating a packaging design that delivers both enhanced consumer value and sustainability benefits will drive consumer engagement and brand interaction. And craft a legacy of winning products at shelf. By managing the complexities of design with Perfect Package, brand manufacturers and packaging suppliers have the power to illustrate what change will mean for the future of packaging and help us realize that future…sooner.

Discover package designs trends today’s consumers are demanding and what brand manufacturers are doing to create them.

Download the “Future of Packaging” report to learn:

  • New trends in sustainable packaging
  • How packaging can influence shoppers
  • Key technologies to accelerate design efforts

…and how Dassault Systèmes helps brand manufacturers foster a deep connection between retail companies and their shoppers, through innovative packaging design.

There is a better way to develop new packaging which avoids costly mistakes and delays, the Dassault Systèmes Perfect Package 3DEXPERIENCE® can help cut design time and costs by 50% while virtually eliminating potential quality issues and recalls.

3DS_2015_CPGR_ISE_PerfectPackage_NeolaneThankYou600x185_V2

3D Printing Takes Off

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

Written by Catherine Bolgar

iStock_000014362043_Small
 

Additive manufacturing (AM), also known as 3D printing, has evolved beyond its plastic beginnings. The medical industry uses the technique with living cells to create tissues and, perhaps one day, organs. In aerospace, AM produces stronger and lighter components, while reducing waste of costly high-tech metal alloys. The U.S. Federal Aviation Administration in April certified the first 3D-printed jet engine part, a house for a compressor inlet temperature sensor called T25, made by GE Aviation.

Conventional manufacturing involves casting a solid part, then milling, boring, sawing, drilling or planing it into shape or hollowing it out, like a sculptor with a block of marble—but using precision machines.

By contrast, AM deposits the raw material—such as aluminum, nickel alloys, titanium or stainless steel—in powder form, 20 to 40 microns thick, which is then melted with a laser according to a 3D computer model. AM then uses several binding techniques, including selective laser melting, direct metal laser sintering and laser deposition technology.

This process has three major advantages over traditional manufacturing: speed, cost and design.

Speed: Time is saved from the moment the design leaves the drawing board.
“To come up with a prototype for any component may take a year: to make castings, get molds in place, then manufacturing, then the assembles required,” says Joseph Markiewicz, plant manager at General Electric Aviation’s $50 million additive manufacturing plant in Auburn, Ala.

With additive, you go from designing a prototype in a 3D model, then test it out and redesign almost on the fly. It’s rapid design validation.”

The supply chain also is shorter. Raw material procurement for conventional manufacturing requires six to 12 months lead time, says Thomas Dautl, head of production technologies at MTU Aero Engines AG in Munich. Then machining of the components takes time, but “if you build your part directly out of powder, you have much shorter lead times.”

iStock_000041686948_SmallFinally, the manufacturing process itself is faster. MTU uses AM to make borescope bosses, which form part of the turbine case on the PW1100G-JM engine for the Airbus 320neo aircraft. More than 10 borescope bosses can be made simultaneously, Mr. Dautl says, and with fewer workers than in conventional manufacturing where workers guide the casting or milling process for each piece produced.

Cost: “What’s really key about additive manufacturing is it’s really efficient from the perspective of materials consumption,” Mr. Markiewicz says. “In additive, you have less waste. Before, you had a piece of metal that you ground down. Now you build up.” With no pile of excess raw material at the end of the process, AM can generate significant savings.

Less wastage is vital, because “you have to have more than a 10%-15% cost reduction otherwise you can’t do it,” notes Mr. Dautl. “There are a lot of other costs if you change to another technique, so you must have a significant cost reduction overall” to justify the switch.

There are also savings to be gained from greater simplicity. GE Aviation uses AM to make fuel nozzles for the new LEAP jet engines manufactured by CFM, a joint venture between GE Aviation and Snecma. Whereas a traditional nozzle comprises 20 different, precision-made components, all produced by traditional methods, and then welded or brazed together, the AM fuel nozzle consists of a single piece.

“There’s significant simplification of the process,” Mr. Markiewicz says, “and better consistency because there are fewer points of variation thanks to having fewer pieces.”

In addition, the AM nozzles are not only more durable, they also weigh 25% less than traditionally produced versions. That is important because “weight reduction is significant for anything in the aviation world,” Mr. Markiewicz says, and each engine has 19 fuel nozzles. The new nozzles help aircraft cut fuel consumption 15%.

Design: As the new fuel nozzle illustrates, AM can produce designs that traditional methods cannot. AM allows “more organic design and organic structure,” Mr. Markiewicz says.

In nature, there are no right angles. Nature finds best the angles for tensile strength. Additive can do this. It has removed the handcuffs that design engineers have typically been held to. Now they can design for hollow internal passageways that are stronger and lighter weight. It opens up a new canvas for designers.”

iStock_000045466576_SmallIndeed, future design departments will need to integrate the complex geometries possible with AM, as well as adjust to new possibilities for lightweight design, MTU’s Mr. Dautl says. Evolving computer-aided design (CAD) software will be able to produce complex designs for 3D printed parts that are hollow for lighter weight yet stronger than what could be made traditionally. CAD programs also will be able to work out loads and constraints for new materials that can be 3D printed.

“It’s a new way of thinking for engineers and manufacturing organizations: producing a 3D model and printing it,” Mr. Markiewicz says. “You’re eliminating the middle steps and creating a seamless flow between design and manufacturing.”

 

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion.

Photos courtesy of iStock

Extending the Showroom Experience Into the Home With BDHOME

By Akio
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

BD-Home

BDHOME, a leading omnichannel retailer of innovative and affordable home decor in China, and Dassault Systèmes announced at the Kitchen & Bath China 2015 expo in Shanghai that they are partnering to revolutionize the home decoration industry in greater China with unique consumer experiences that extend beyond the showroom and into the home.

To support this initiative, the two companies will create a joint venture that will accelerate the adoption of Dassault Systèmes’ 3DEXPERIENCE platform by the home furniture and decoration markets.

The joint venture combines the expertise of Dassault Systèmes in transformative digital solutions and of BDHOME in creative business models for high-quality, affordable home decor, to provide powerful 3D technologies that bring a new level of quality to the showroom experience.

Specifically, the joint venture will distribute Dassault Systèmes’ 3DVIA brand of applications for smart, 3D space planning solutions in mainland China, Hong Kong, Macau and Taiwan.

It will develop related 3D content, services and experiences for furniture manufacturers such as virtual furniture and catalogues targeting furniture customization, construction and decorating materials.

Consumers can use the 3DVIA HomeByMe online interior design application to visualize and customize ideas for home decor or remodeling projects in 3D, and bring showrooms into their homes for a personalized decorating experience.

Click to TweetClick to Tweet: #HomeByMe helps Chinese consumers
visualize & customize ideas for home decor & remodeling in #3D

“With increasing demands for personal consumption from Chinese consumers, ‘customer experience’ has become a priority for each furniture manufacturer and retailer in terms of product production and sales,” said Mr. Chen Zaochun, President, BDHOME.

“Dassault Systèmes’ 3DVIA provides 3D virtual space, numerous decoration catalogues and fashion-tracking styles so that Chinese consumers can use their imaginations to build a home that belongs to them, and enjoy the amazing experience of decorating it. As the competition in the furniture market grows even fiercer, through its partnership with Dassault Systèmes, a global leader in 3D technology, BDHOME hopes to offer core competitiveness to furniture manufacturers while fostering better values for customers through the development of excellent customer experience.”

“Home design holds a very special place in Chinese culture—where a long history of ancestral tradition in furniture manufacturing blends art, customs and know-how—and, together with BDHOME, our ambition is to help designers and consumers reveal and unleash their creativity by combining a traditional approach to home and office decoration with the new standards of today’s society,” said Bernard Charlès, President & CEO, Dassault Systèmes.

Click to TweetClick to Tweet: “Home #design holds a very special place
in Chinese culture.” -@BernardCharles

“We look forward to replicating the European success of our 3DVIA HomeByMe application in greater China with a specialized partner like BDHOME, whose online-offline business model and rigorous selection of international designers have created a paradigm shift in the region’s traditional home decor retail channels. The power of the virtual world has already been successfully demonstrated in multiple industries. Together with BDHOME we can complement and support existing businesses in the home decoration industry with customer-centric, value-added services that virtually unite the consumer, designer and retailer.”

Click to TweetClick to Tweet: “Power of #virtual has been proven in multiple industries,
now entering China’s home decor market.” -@BernardCharles

About BDHOME

As founded by nine veteran designers in China, BDHOME is a leading interior soft decoration solutions provider that markets total soft decoration and imported home supplies in OTO model.

More than 13,000 kinds of products are provided by BDHOME, mainly in neo-classic, neo-oriental, neo-US and modern styles.

Now BDHOME has set up offline experience stores in more than 20 cities in China and the onsite designers will provide total design solutions and recommendations to consumers without charge. For more information, visit www.BDHOME.cn.

Related Resources

Collaborative and Industrialized Construction from Dassault Systèmes



Page 3 of 1312345...10...Last »