Spotlight on Dr. David Gerber: Building a Storied Career Around Easing Design Complexity

By Akio
Paradigms in Computing

“Paradigms in Computing: Making, Machines, and Models for Design Agency in Architecture”
by David Jason Gerber and Mariana Ibanez

Today Dr. David Gerber serves as assistant professor of Architecture and Civil and Environmental Engineering at the University of Southern California, but the title he claims is far simpler than his multi-disciplinary research aims.

The son of an engineer and a computer scientist, Gerber has called many countries (and at one point, a sailboat) home, and his work today reflects that blend of technological interests and global perspectives. A design architect by training, Gerber has worked for some of the world’s most innovative architecture and technology firms, including Gehry Technologies and Zaha Hadid Architects.

Since then he has served as professor, lecturer, author, and founder of several technology startups, but his work revolves around one theme: the intersection of architecture, design with computation, and technology.

Tweet: Building a Storied Career Around Easing #Design Complexity @Dassault3DS #BIM #AEC http://ctt.ec/1Tf11+Click to tweet: “Building a Storied Career
Around Easing #Design Complexity”

Finding A Better Way

It was during his time with Zaha Hadid Architects more than 14 years ago that Gerber says he discovered the lesson that would set his career trajectory.

That path, as he describes it, has been “to develop parametric skillsets, technologies, and knowledge to better equip designers to handle real-world complexity, while maintaining the highest level of quality in design possible.”

Gerber had won the title of project architect and manager for a massive new project: the One North master plan in Singapore. The design called for a 30-year master plan for a city of 200,000 people, with 5 million square meters of gross floor area over 200 hectares of land.

At that time, parametric design wasn’t a term ever heard in architecture, but the connection of information it allows was greatly needed by such a complex project.

“There weren’t any tools for me to appropriately manage my responsibilities, which was to link the data to my geometry while my geometry was changing on an hourly basis,” Gerber recalls. “And the data sets were enormous.”

Ultimately, Gerber developed a program that linked this information. However, he left the project thinking, “There has got to be a better way to enable good design, while not losing the bidirectional impact from geometry to data, and data to geometry.”

Exploring Parametrics

The Singapore master plan was a project with a painful lesson, learned under a tight schedule and cost constraints, among other challenges. Yet Gerber knew the tool he had commissioned while working on the project—what he calls the first parametric urbanism tool—was a first step toward smarter design.

 From Zaha Hadid Architects, Gerber went on to Harvard’s Graduate School of Design to pursue his doctorate. It was in a class taught by his advisor that Gerber discovered CATIA®.

It was among the first classes in which architects were instructed on CATIA, and it was eye-opening for Gerber to realize that there already existed technologies in engineering disciplines that he and his colleagues had tried to duplicate in the architectural setting.

“This became the 4-year trajectory of my PhD studies, in which I wrote one of the first PhDs in architecture on parametric design,” Gerber says.

His early experience in CATIA, through classes and work at MIT’s Media Lab where he was appointed as a research fellow, became an asset that helped Gerber earn an internship at Gehry Technologies, where he was able to further develop this knowledge for architecture.

Since then, through lectures, teaching and publications, Gerber has set out to help others realize the “better way” of delivering highly complex projects.

Removing Uncertainty

Gerber believes that parametric design tools and the shift to 3D design have become so valuable to designers because they help address the problem of uncertainty that is characteristic of design.

“As designers, we have a huge amount of responsibility because our visions carry with them 100- to 200-year lifespans and life cycle costs,” Gerber says.

Tweet: Our #AEC visions carry 100- to 200-year lifespans and life cycle costs @Dassault3DS #BIM http://ctt.ec/dawBd+Click to tweet: “Our #AEC visions carry
100-to 200-year lifespans and life cycle costs”

Given this duration, he sees design as inherent with enormous uncertainty. As a result, Gerber says, “It’s our duty to enhance the design process, and therefore the design product, with more and more intelligence.”

Parametric and generative design systems are one key for linking otherwise fragmented expertise in the AEC industry and applying it to accurately achieve the complex aims of today’s projects.

Parametric design mode, image courtesy of David Gerber

Image courtesy of David Gerber

Of course, there is room for more innovation in this new approach toward integrating project expertise. Gerber describes his world today as being about solving the problems that lie at the intersection of architecture, engineering and construction through an emphasis on the humanistic expression of design and integrating the innovations in the computer science field.

“My ultimate aim is to provide higher fidelity information, and capture higher fidelity knowledge to better equip the architect and designer,” Gerber says.

3DEXPERIENCE Forum 2014

David Gerber is a featured speaker along with Becher Neme and Kerenza Harris at the upcoming 3DEXPERIENCE Forum in Las Vegas, November 11-12, 2014.

Dr. Gerber will present the evolution of CATIA-based teaching, consulting, and research through the lens of 12 years of experience. The talk will highlight the importance of bottom-up and top-down educational and research strategies, and will link to the needs of AEC industry challenges.


Related Resources

Learn more about David Gerber’s work

Learn more about Façade Design for Fabrication

Register for the 3DEXPERIENCE Forum Las Vegas, November 11-12, 2014

Banner 3DX FORUM NAM

Designing for the Medical Device Industry: Holistic Solutions

By Helene

This post originally appeared at Core77.

A Multi-Faceted Approach

Bringing a consumer product to market is a challenge in and of itself—taking an idea through concept development, business analysis, beta testing, product launch, and beyond. Add the FDA (Food & Drug Administration) to the mix, and it’s a whole ‘nother story. This is the challenge faced by medical device and product firms, which not only have to make a fully functioning, well-designed product but also have to put it through several rounds of rigorous testing by the FDA and other regulatory bodies.

The AliveCor heart monitor, designed by Karten Design.

“They’re parameters. They don’t stop you from doing anything, but they do make you do it in a way that you, as a user, would probably think is a good thing,” says Aidan Petrie, Co-Founder and Chief Innovation Officer of Ximedica,

an FDA-registered product development firm with an exclusive focus on medical products. On any given day, Ximedica is running 40 individual programs, overseeing the steps required to bring these products to market. “We don’t do anything that isn’t a FDA-regulated product,” says Petrie.

The timelines for these projects can run anywhere between two to six years. While time-to-market is not the primary driver, finding ways to close that gap can make a big difference in profitability. For companies like Ximedica and HS Design, closing that gap meant becoming International Organization for Standardization (ISO) 13485 certified. “There are so many regulatory and quality metrics that had to be put in place to satisfy those requirements that it made us a better and stronger company,” explains Tor Alden, Principal and CEO at HS Design (HSD). “It also put us to a level where we couldn’t just accept any client. We had to become more sophisticated as far as who our clients were and how we could say no or reach a point of compliancy.” By building those regulations into the design process, these companies are able to anticipate and plan for any potential timely obstacles from the get-go.

As the products become increasingly complex, so do the regulations around how they’re developed. Traceability of every decision is required for ISO and FDA compliance, ensuring that medical device firms have a standardized quality management process that they follow and document every step of the product’s development. Depending on the type of product, specialists are often brought in to advise different aspects of that process. “There are so many parts to the puzzle,” says Petrie. “We have a hundred and forty people, but we still need specialists all over the place. We have regulatory people on staff, but we also bring in other pieces that we need. While all the people we have in the building are experts in medical device development, when we need someone to develop some optics, we go outside for that. It’s very collaborative because nobody can do it all by themselves.”

As an FDA-registered developer and contract manufacturer, Ximedica takes products all the way through to clinical trials—a part of the process that comes with its own set of requirements all its own. Even a product as benign as a toothbrush, for example, calls for regulations under HIPPA (Health Insurance Privacy and Accountability Act) if it is being tested by people over the age of 65, under 18, or those living with certain medical conditions. Being able to connect these requisitions to product features in the beginning would allow a project manager to track deliverables and foresee any hurdles before the final design goes to Verification and Validation.

Concept design of a smartwatch

Companies like Dassault Systèmes hope to offer a holistic approach to these problems. Similar to how Ximedica has positioned themselves as the one-stop-shop for all of the components needed to bring a medical product to market, Dassault Systèmes’ Ideation & Concept Design for Medical Device creates a space for designers, marketers, specialists, and collaborators to bring an idea through all the phases of the design process. Powered by their 3DEXPERIENCE® platform, Ideation & Concept Design for Medical Device brings together automated market listening, 3D-drawing to 3D-design integration, traceability, and project management together in one program—in the cloud.

“It’s very challenging to get a medical product to market in less than two years,” explains Alden. “A lot of it has to do with how challenging it is from the FDA standpoint and getting it through the regulatory bodies, but a lot of it is making sure that everybody is working with the same sheet music. Most important is to capture the user needs upfront and translate them into quantifiable attributes.  Additionally we need to combine these user needs with the technical issues into a product requirement specification.  Managing all these aspects of a project, understanding all the players, and the regulatory milestones is vital to shortening the time to market.”

Check out Beyond the design of the Medical Device to dig deeper into this topic and access the “Ideation & Concept Design for Medical Device” information kit here, over on Dassault Systèmes’ site: Ideation & concept design for medical device.

Foamy Headphones and Smelly Clothes: Designing for the Second Moment of Truth

By Estelle

This post originally appeared at Core 77

High tech products

News about a bad product experience travels quickly. Maybe it’s because of the fact, according to a white paper “Designing for the User Experience,” that five times as many people will tell a friend about a bad experience than a good one, or that social media makes it easier than ever to share that negative message, but news of design shortcomings and failures spread fast.

If I’m buying a pair of headphones and the sound is good, but they’re not comfortable, they’re too small for my head, they are too foamy… I’m not going to have a good Second Moment of Truth with that,” explains Stuart Karten, Principal and Founder of Karten Design.

The same goes for a bottle of laundry detergent you may have purchased for its swanky packaging: if your clothes don’t come out smelling clean, you probably won’t buy it again. That Second Moment of Truth (SMOT) often relies on the user experience, what happens when a consumer actually uses the product. As more and more of those products move towards the digital space, that experience comes down to a digital interface, the intuitiveness of those interactions and ease of use. Karten elaborates:

In general, there are multiple trends that are happening in the consumer electronics arena. One is that things are becoming rectangular boxes with user interfaces. The “stickiness” and the appeal and the connection are moving into the digital space. That puts a lot of challenge on—not only the overall form factor of the product on that first level—but the second level of that digital engagement”.

There are other challenges as well when it comes to designing high-tech consumer electronics. “With High-Tech, the technology is usually brand new, so this thing that you are designing is actually morphing as you move down the development cycle because, as time is changing, the technology is advancing,” explains Rob Brady, CEO and Design Director at ROBRADY, which focuses on consumer, industrial, marine and medical products.

Both Karten and Brady agree that designing for that second level requires a user-centric approach, spending time with the target audience to anticipate and better meet their needs. For electronics and other high-tech goods, that means understanding the incentives behind why a consumer would want this product and the motivation behind their purchases. “People make a conscious decision that they want a new pair of headphones, a new laptop,” says Karten. “They want it to define who they are and the person they want to be.”

Watches rendering

Designing with a broadly aspirational approach often means putting a series of virtual prototypes in front of focus groups, simulating interaction and providing a realistic rendering that can then be iterated upon before even printing out a physical prototype. Once the limits of virtual prototyping have been reached, focus groups can be brought in and products are placed in their hands. As these products move into the digital space, however, so do those focus groups and companies like Dassault Systèmes are creating solutions that virtually emulate the product development process from coming up with a concept to testing it in a online retail or working setting.

Ideation & Concept Design

You build a model and you test it. You do an alpha and you test it. You do a beta and you test it. You prototype early and often,” says Brady. “At the end of the day, it’s all about humans interacting with products and designers making these different products approachable and accessible.”

Do not miss the new edition of MADEin3D contest “Cup of IoT”, featuring the theme of Internet of Things! Register to the MadeIn3D community to enter the contest now! Also, you will want to check out our white paper titled “Designing the User Experience”.

Enter the Cup of IoT contest!



Page 1 of 912345...Last »
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.