How Medicine Makes Sense of Big Data

By Catherine

Written by Catherine Bolgar*

Big data for Medical

Big data is a game-changer for medical research. The ability to analyze vast sets of information, thanks to bigger and faster computers, is helping researchers to understand diseases, tease out genetic factors and spot patterns.

More researchers are looking at big data and understanding how we can utilize [it] in a better manner,” says Ervin Sejdic, assistant professor of electrical and computer engineering at the University of Pittsburgh, U.S., and founder of its Innovative Medical Engineering Developments lab.

In the past, clinicians would get data from patients and hold it up to metrics to try to see something by looking among different patient groups. “What they’re doing is flushing out the details. But the devil lies in the details,” Dr. Sejdic says. “The details are where we start understanding things. What’s really shifting in medicine is the fact that, yes, there is data, but let’s look at whole data sets.”

At the same time, better and smaller electronics, from smartphones to sensors you can wear, can compile more information at a detailed level and over bigger populations. “Researchers are looking at the interactions between different physiological systems. Sometimes these interactions break down in people with various diseases. Sometimes you have to look at the level of a minute, or an hour, or a day,” Dr. Sejdic says. “What big data is going to enable us to do is finally look at a human system as a system, rather than as individual components put together.”

Big data also is helping doctors and researchers to view diseases in shades of gray, rather than with a purely black-and-white outlook.

In the past, diseases were viewed in a simplistic way: a person is healthy or a person has disease. We would get specific information about the two states and compare the difference,” says Sergei Krivov, research fellow at the University of Leeds, U.K., who recently published research on the monitoring of kidney-transplant patients using big data techniques.

With transplants, he says, “There are two outcomes: perfect or problems. We are trying to find a single parameter to describe where you are between these two stages and what is the prognosis.” Based on the indicator, doctors can decide at an earlier stage whether to intervene into the process.

What I would like to see in the future is the following picture,” Dr. Krivov says. “A sizable part of the population frequently gives blood for analysis, for example during regular visits to their doctors. This would go to a data center. Based on this data for five or 10 years, we could determine indicators describing the degree of progression or the likelihood to occur for different diseases. We will give back this information as numbers, which is easy to interpret. This, in turn, will encourage patients to participate.”

One indicator patients might get with this approach is their biological age. “So you’re 30 years old, but your biological age is 20—or 40,” Dr. Krivov says. “Changes in your diet, exercise or lifestyle affect biological age. You might get younger, biologically. That would be reinforcement to the patient that he or she is doing well.”

DNA moleculeSome recent uses of big data include predicting the future of metabolic syndrome, advancing neuroscience, identifying dangerous pathogens, and conducting cancer research, among many others. DNA sequencing is getting cheaper thanks to big data, and genetic sequencing with big data is becoming a key part of epidemiology, because it helps trace chains of infection. Big data is helping researchers not only to understand the different genetic mutations in cancer, but also to personalize medicine: different mutations respond differently to treatments, and getting the right treatment straight away spares patients from side effects of treatments that aren’t effective for their particular kind of cancer.

However, challenges remain for big data to reach its full potential of analyzing many kinds of information from many patients. With computers, it’s “garbage in, garbage out,” so data needs to be structured to ensure consistency. Information often isn’t shared because organizations lack procedures or systems for communication. Advances in technology are helping to overcome some of those challenges, according to “The ‘Big Data’ Revolution in Healthcare,” a study by McKinsey & Co.

Big data is still a work in progress in medicine. “If a certain number of people have a disease, the task of searching for them will take minutes instead of days,” Dr. Sejdic says. “But for other things, it will still take days because you need to develop software first for analyzing the data.”

Too much data can be a problem, too. “When you know what you want to find out, it’s a much easier problem,” he says. “But if you’re looking for new patterns, it’s more of a fishing expedition. Whenever we do clinical trials, we are flushing out the details. There’s so much information that it’s hard to track it. Until we do that, we won’t have a good understanding. The major change will occur in the next 10 to 15 years.”

*For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.

How to Stay Competitive? Develop Smart Appliances in the Era of Experience

By Estelle

Smart Home Device - Home Control

It is no secret that smart home appliances now are very complex.  No longer is a TV just a TV, or a refrigerator just a refrigerator.  Each smart home appliance needs to be digital, and it needs to interact with people or at least with other machines and devices.  It is connected to the Internet and has a variety of sensors.  It needs to collect data and give you more information, all the while lessening the need for you to actually do something to operate it.  You enter the room and your air conditioning is already up and running, keeping the room at an already comfortable temperature.  You drive up your block and your garage door opens automatically, while also turning on your lights and your TV to the channel that you always watch at that time of day.

It is no wonder IBM found that 71% of global CEOs(*)  now say that technology is the biggest external force that could impact their businesses within the next three to five years.  Most manufacturers now need to prove their competency by developing high technology products in order to stay in the competition. Otherwise, it will be your competitors who are going to give your customers the features and functionality that they want and need.

That is, of course, easier said than done.  In order to make smarter home appliances, you would need to have engineering proficiency in a wide array of areas such as software, mechanical, electrical, fluid, electronics, software, and other specialized areas.  It is not easy to excel in any of these fields, but having the knowledge is already a small part of your success.  You need to know how to bring all of these competencies together to meet what is required of your smart home appliances, as well as figure out what problems to solve and what technologies to use.

Today’s competitive manufacturer knows that looking at individual features and functionality is no longer enough.  You also need to focus on experience as well as product benefits.  Focusing on experience, you would need to know what your customers want to feel, to touch and to see, and how all of these affect their actions and emotions.

To stay competitive, you would also need to use big data to discover your customers’ preferences, even those that were not available before.  Then you would need to be able to translate these insights, experiences, and preferences into product attributes, such as energy consumption, usability, capacity and performance.

Once you know what attributes you would want your smart home appliance to have, you should be able to communicate these specifications to your design teams simultaneously and automatically.  This would mean that all your different design teams for software, mechanical design, electronics and other areas would get the attributes you need and want at the same time.

From there, you should be able to make trade-off decisions on how your design would be met by each of these design teams.  You should also strive to shorten your development time while ensuring that all your design needs are met, by using social collaboration tools and workflow.

And while work is in progress, you should be able to assess and monitor everything in real time.  Furthermore, you would need a virtual simulation of your products’ first prototypes.  This way, you would still be able to fine tune or revise everything that needs to be changed in your product design while still bringing down your development costs.

In short, traditional manufacturing concerns really need to transform their operations into high tech product development companies with the help of solutions such as Dassault Systemes’ Smarter, Faster, Lighter solution.  This way, you can transition into a more competitive and high tech manufacturing company by helping you define processes using established systems engineering principles.  These solutions also allow everybody working on the project to collaborate on your products, thereby making it easier to share knowledge and process that ultimately helps you produce a product that your customers will love.

Interested in #IoT and #SmartHomeJoin Dassault Systèmes, Panasonic, GE and Parks Associates, for strategies to transform product management in the #IoT: February 3: http://bit.ly/DassaultCast

(*) CEOs-IBM-Survey-2012

The Living Heart Project: Remarkable Progress Achieved Through a Common Goal to Improve Cardiovascular Disease Outcomes

By Helene

LHP-zSpace-Demo-Zygote-Heart-hi-res_600

Steve Levine, Chief Strategy Officer for SIMULIA Dassault Systèmes, is passionate about bringing cutting edge technologies from different disciplines to doctors and the patients they treat. In a recent recorded presentation at the 3DEXPERIENCE Forum in November 2014, Levine outlined the need for utilizing these technologies to build better human anatomical models, stating that 95% of all medical devices released to the public have never been tested on the human body.

The Living Heart Project was launched publicly in May 2014 to develop the world’s first realistically functioning computer model of the human heart. This project has made tremendous progress, and the video referenced above includes Levine and Dassault Systèmes President and CEO Bernard Charlès announcing a 5 year collaboration with the Food and Drug Association to develop cardiovascular testing paradigms.

The Living Heart Project relied on Dassault Systemes 3DEXPERIENCE platform to bring together more than 100 cardiovascular specialists from 30 organizations to develop and test the model. In the video, Levine commented that at the outset, bringing together researchers, doctors, medical device companies, and regulatory agencies was a challenging task as information is siloed. The 3DEXPERIENCE platform allowed the specialists to crowdsource the heart model, with each bringing their expertise without sacrificing intellectual property.

The video shows impressive visualizations of The Living Heart model that are, pardon the pun, heart stopping. Levine points out in his presentation that it is the first four chambered 3D heart model that is based on commercially available, validated technology. He also showed that the model can be viewed in different ways, highlighting mechanical stresses important for indications such as heart failure as well as visualizing electrical conductivity which is important for studying heart arrhythmia. Levine also showed how collaborations within Dassault Systèmes were instrumental to visualize The Living Heart in 3D, as a “walk in” model. Additionally, 3DEXCITE provided true to life coloring and features to aid medical students and surgeons.

Levine went on to tell the story of Emily, a girl born with a heart that is literally “backwards,” with right and left ventricles transposed. As the earlier 3D models Levine showed in the presentation illustrated, the heart is not symmetrical, so this defect has caused Emily to have 4 pacemakers by the age of 20. In May 2014 an animated video showed Emily’s story and how the The Living Heart would help diagnose and treat her. Emily’s story is particularly touching for Levine to relay, and the reasons are best explained by him, so we encourage you to watch the entire video of his talk to learn why.

Levine talked about the collection of resources available at 3ds.com/heart which helped to describe the vision of the Living Heart Project to collaborators and to illustrate their progress.  He sees the project as a model to unite other healthcare specialists, medical device companies and regulatory bodies to collaborate around aspects of human anatomy or disease models. The 5 year collaboration with the FDA will increase the number of participating organizations from 30 to 100 and will continue to involve the Medical Device Innovation Consortium of which Dassault Systèmes is a key sponsor.



Page 4 of 216« First...23456...102030...Last »
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.