Profiting From Unity

By Akio
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

The construction industry is turning to the cloud for improved efficiency and profitability.

The rapidly growing global construction industry suffers from fragmentation, which increases risks, leads to wasteful practices and negatively affects project delivery and stakeholder interests. But now, cloud-based collaborative tools are replacing traditional industry practices with new business models that imagine, design and construct better buildings.

clicktotweetClick to Tweet: #AEC Turns to the Cloud
for Improved Efficiency & Profitability

Article by Nic Lerner, originally printed in COMPASS Magazine 

From the Construction Intelligence Center to PricewaterhouseCoopers (PwC), most industry trackers agree that construction is in for a boom.

A PwC–sponsored report entitled “Global Construction 2030,” published by Global Construction Perspectives with Oxford Economics, predicts a compound growth of 85%, to US$15.5 trillion, by 2030.

That level of expansion is more than a percentage point higher than the 3.9% annual growth rate projected for the global economy as a whole, driven in large part by rapid growth in urban populations.

But a dark cloud looms behind those silver growth projections.

The industry, experts agree, is so fragmented with numerous segments – architects, engineers, construction firms and dozens of trades both big and small – that it is not prepared to handle this level of expansion.


Javier Glatt, co-founder and CEO of CadMakers Virtual Construction, a Vancouver-based integrated construction technology firm, said the reasons for fragmentation come down to legal responsibility.

“The causes of fragmentation are risk and liability issues and their apportionment through the industry,” he said.

As buildings become bigger and increasingly complex, they require more specialized skills at every stage. Tiers of subcontractors are appointed not only to do the work, but also to carry some of the risk.

Glatt cites a misalignment of incentives between stakeholders and contractors, with some working to push down costs while others seek to benefit from budget increases.

Even the design process becomes fragmented, with different contractors responsible for structures, facades, visualization, analysis and multiple building systems.

The good news, however, is that there is plenty of room for improvement.

“Automating processes and making prefabricated components off-site reduce risk, cost, waste and errors,” he said.

“Working with a single unified 3D model that everyone has access to helps solve a lot of problems that arise when contractors don’t or can’t communicate among themselves.”

When each contractor produces its own individual model and data, the chances of error and miscommunication increase.

With a unified project model, Glatt said, “builders understand their role in the project and their interactions with other contractors. They can concentrate on their core skills, solve problems and build better.”


Research conducted by Dodge Data & Analytics, a leading data, analytics, news and intelligence provider for the North American construction industry, reinforces these observations.

Donna Laquidara-Carr, the company’s Insights Research director, said that their analysis of Architecture, Engineering & Construction (AEC) industry data, from a study conducted in partnership with the Lean Construction Institute, shows that 92% of “typical projects” – those that suffer from fragmentation – experience delays, 85% go over budget and 63% suffer quality defects.

“The data demonstrates that integrated project delivery correlates with significant performance improvements and waste reduction,” Laquidara-Carr said. “And we hear time and again that the key to unlocking these benefits is early stage collaboration.”

The data shows that only 1% of owners deployed project integration tools on typical projects, she said, but that these tools were used on 22% of the industry’s “best-performing projects.”

Consequently, positive team chemistry was reported on 68% of the “best projects,” compared with just 10% on “typical projects.” Teams were well- integrated on 61% of the “best projects,” but only on 9% of “typical projects.”

The data indicate that when all stakeholders – including owners, contractors and trades – are integrated in a virtual “big room” that facilitates working together as one team, the AEC industry functions better, Laquidara-Carr said.

A virtual “big room” is a term for a unified online communications and collaboration platform.

Building Information Modeling (BIM) was heralded as a solution to fragmentation, but industry experience has not been consistently positive.

Tim Beckett, director of Beckett Rankine, a UK-based specialist marine civil engineering consultancy, is a design contractor on the 25-kilometer (16 miles), 7.4-meter (24 feet) diameter Thames Tideway Tunnel. The super sewer is budgeted at £4.2 billion (US$5.2 billion) and will reach depths of 65 meters (213 feet).

Tideway is building the Thames Tideway Tunnel to tackle the problem of overflows from London’s Victorian sewers for at least the next 100 years, and enable the UK to meet European environmental standards. (Image © Tideway)

Tideway is building the Thames Tideway Tunnel to tackle the problem of overflows from London’s Victorian sewers for at least the next 100 years, and enable the UK to meet European environmental standards. (Image © Tideway)

Standard BIM systems can be “clunky to use, expensive to buy and require specialist skills to operate,” Beckett said. However, he sees benefits in a cloud-based approach, which offers the advantages and capabilities of BIM while making information more broadly available to people of all skill levels.

“The Thames Tideway Tunnel is expected to operate for more than a century, so all the data must be future-proofed,” Beckett said.

“A cloud-based solution to project management at this scale would allow stakeholders simple, easy, cheap, permanent and traceable access to the data that they need, today and into the future.”


“Visual simulations and high-resolution data are necessary to properly think through very complex projects,” said John Cerone, director of Virtual Design and Construction at New York-based architecture firm SHoP Architects.

“Standard BIM supports traditional building practices, but builders are seeing that a high-quality, unified 3D cloud-based approach helps them make more money by being more efficient.”

That the industry will accept a unified approach to managing building project data is only a matter of time, Cerone said.

“Construction is such a large part of the global economy that many billions can be saved and made through efficiencies,” he said.

Encouragingly, SHoP is hearing significant interest from builders who want to share the benefits of a unified approach.

Replacing linear processes with the concurrent working practices enabled by a unified approach speeds the design-to-fabrication process and introduces greater accuracy while automatically maintaining financial rigor.

“If car companies can know how much steel goes into a car, to the micron, why can’t you do that with a building?” Cerone said.

clicktotweetClick to Tweet: “Car companies know how much steel goes into
a car to the micron; why not buildings?” @SHoPArchitects

On a current project, Botswana Innovation Hub, an iconic symbol of Botswana’s support for research and development, SHoP has attained this level of “digital craft” across continents.

The results, Cerone said, are “speed with no waste, total accuracy of fabrication and absolute budgetary control.”

“A new 3D-model-based paradigm that actually incentivizes innovation, produces higher profits and helps make better buildings is coursing through the AEC industry,” Cerone said. “The industry is transforming, and it is very exciting to be a part of it.”

4 Benefits of Building Lifecycle Management:

BIM (Building Information Modeling) data, combined with PLM (Product Lifecycle Management) capabilities and processes, creates “Building Lifecycle Management” (BLM), which can increase construction predictability, long-term value and profitability. Main benefits include:

Improve Productivity: BLM helps remove version-control issues, with all users accessing a single live database. Human error, rework and iterations can be drastically reduced.

Increase Quality and Value: Armed with richer data in context, designers can make better decisions. Data access also improves coordination among builders and suppliers, allowing them to more quickly and accurately realize the design intent. BLM also offers built-in governance and traceability, improving accountability.

Reduce Waste, Risk and Cost: BLM is designed to reduce waste by more accurately predicting outcomes, identifying potential points of conflict and optimizing processes. BLM also reduces risk to the project schedule, worker safety and the overall construction budget.

Gain a Competitive Advantage: A BLM system enables a team to become more efficient than competitors, deliver higher quality, gain the loyalties of owners and design partners and retain a healthier profit margin.

clicktotweetClick to Tweet: #AEC Turns to the Cloud
for Improved Efficiency & Profitability


WHITEPAPER End-To-End Collaboration Enabled by BIM Level 3: An Architecture, Engineering & Construction Industry Solution Based on Manufacturing Best Practices

Design for Fabrication Industry Solution Experience

Wearable Sensors Make Workplaces Safer

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+


By Catherine Bolgar

close up of hands setting smart watch

Millions of people world-wide wear devices to track their activity, heart rate and sleep. The number of wearable sensors is expected to reach three billion by 2025. Employers are looking at how the devices can improve workplace safety, especially in dangerous or remote environments.

A hospital in Turin, Italy, experimented with a variety of wearable sensors as well as sensors incorporated into the environment—the Internet of Things, says Guido Boella, professor of computer science at the University of Turin, who was one of the researchers of the study, called Sensing Safety at Work. A dashboard showed  not only information from the sensors, but also a map of the hospital to pinpoint workers in distress.

Sensors on wristbands were given to employees in a laboratory where toxic substances were handled. “If they got sick or fell down, it set off an alarm and showed them on the map,” he says.

Another aspect of the study used sensors on bands on the wrist or body, or on necklaces, designed to avoid being invasive while employees worked, but which could signal problems by setting off an alarm via vibration, light or sound. A third experiment combined information about the dispersion of toxic substances in the air with the physiology of individuals.

Female scientist working in lab 7“We combined data from people with wearables with data from Internet of Things sensors”  detecting substances in the air, Dr. Boella says. “For many substances, the problem isn’t just a threshold level present, but how much of it is absorbed. That depends on a person’s activity, how long they are exposed, how high their heart rate is. The values from the body were combined with values from the Internet of Things sensors in the room to provide personalized alarms.”

Both the cost and size of sensors have diminished greatly in the past few years, but battery life is still limited, requiring either better batteries or more efficient hardware, says Saul Delabrida, assistant professor at the Federal University of Ouro Preto in Minas Gerais, Brazil.

Connections also are an issue. “The current state-of-the-art of the technology allows creating wearable devices with enough power-computing capabilities to process the data collected from the sensors without a Wi-Fi connection,” he says. “The sensors need to be connected to the module [that’s] able to execute an algorithm that provides information to the user in this strategy.”

Sensors can monitor workers for fatigue, overheating and cold, as well as location—to find a forestry worker alone in a remote place, for example. Already the mining industry uses sensors for detecting dangerous levels of dust and gases, and proximity sensors on both trucks and miners to reduce accidents. “When he raises a bucket of rocks, the driver doesn’t have a good view,” says Martin Lavallière, professor of health and kinesiology at the University of Quebec at Chicoutimi, Canada. An alarm in the truck warns the driver that a miner is nearby, while a wearable on the miner alerts him that he’s too near the truck.

Employers also can promote health and wellness through the activity trackers that many employees already wear, in a trend that reflects the BYOD—Bring Your Own Device—model for smart phones at work, Dr. Lavallière says, or they can choose one brand and provide it to all employees. Either way, the goal is to give incentives to employees, to make sure they get enough activity and maintain good health behaviors.

“If employees maintain their health they will be able to be more productive and more efficient, with fewer absences for sick leave, less ‘presenteeism’—when they show up for work sick and are not as productive,” he says.

Woman carpenter using circular saw.Employers could use the data on an individual level to encourage wellness, or could aggregate the information to gain insights into how employees react to situations at work. For example, “they could see that every time employees go to this workstation, their heart rate goes up,” Dr. Lavallière says. “Is that because the work is physically demanding, or because someone nearby is creating a stressful environment through their behavior, like yelling at people? When you look at the data from all the employees, you can say, ‘This job seems more stressful. How can we make it better? Should we separate the task in two?’”

Another question will be how employers deal with worker privacy and control.

The factory of the future could use these devices not to track whether someone is not feeling well, but whether they are making the right movements with their hands,” Dr. Boella says.

A wearable sensor could detect whether a worker is assembling an appliance in the authorized way. On the one hand, such monitoring could reduce repetitive-motion injuries. On the other, “there may be no more freedom to do things in a different way,” he says. “Not even controlling our bodies and movements.”

Tracking how many steps an employee takes or how long they sleep “could be seen as Big Brother at work,” Dr. Lavallière says.

In introducing wearable sensors in the workplace, employers need to explain the nature of the data collected and use incentives rather than punishment, he says, adding, “There will always be a conflict between the employee and employer. What’s important is that everyone draws benefits from the technology.”



Catherine Bolgar is a former managing editor of The Wall Street Journal Europe, now working as a freelance writer and editor with WSJ. Custom Studios in EMEA. For more from Catherine Bolgar, along with other industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of iStock

Immersive Business in the Age of Experience

By Alyssa
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

In the Age of Experience, any technology that can help to deliver a superior customer experience is a bonus. Immersive virtuality (iV) – the full spectrum of technologies from augmented and virtual reality to holograms – is one of the most transformative advantages business leaders have ever received. Why? Because unlike traditional forms of communication, immersive virtuality – especially virtual reality (VR) – is processed in the part of the brain that deals with emotion and memory. In other words, companies can use iV to create experiences that connect with their customers at the emotional level and create lasting memories.” 

Monica Menghini, Executive Vice President and Chief Strategy Officer, Dassault Systèmes



The new issue of Dassault Systèmes’ corporate thought-leadership magazine, Compass, focuses on Immersive Business in the Age of Experience.  Across seven articles in the cover section, we look at what established companies have been doing with iV and what new opportunities are emerging in design, marketing, manufacturing and science.  We explore the impact of more affordable, portable and increasingly collaborative head-mounted display technology, ranging from manufacturers that use it for product validation and problem detection to helping consumers to experience their products in a natural, powerful way.


The issue is full of articles on other topics too, such as:


Read this issue now to discover these stories and much more!


Page 4 of 296« First...23456...102030...Last »