Small Solutions for the World’s Biggest Challenges

By Catherine

Nano molecule structureWritten by Catherine Bolgar*

Nanotechnology is one of the biggest trends for the future, bringing new materials and new understanding of the world at the smallest scale: that of molecules and atoms.

Ten or 15 years ago, nanotechnology was seen as hype,” or a passing trend, says Andrei Khlobystov, professor of nanomaterials and director of the Nottingham University’s Nanoscience and Nanotechnology Centre in the U.K. “But as time goes on, nanotechnology is becoming much more a part of our life. It doesn’t go away because there are still a lot of opportunities, still huge scope to contribute to economy and society.”

Nanotechnology can contribute solutions to help address the grand challenges in the world—energy , health care, sustainability —he says.

Carbon nanotubes, for example, conduct electricity better than most metals, offering a way to replace metals, such as gold, platinum and palladium, which are in increasingly short supply. Their electronic properties make them ideal for use in transistors, while their size—80,000 times smaller than a human hair—opens new opportunities for miniaturization. The sum of such properties holds promise for smaller, more powerful, faster computers.

Carbon nanotubes also are extremely strong—and already used for certain components in cars—but light in weight. And they’re made of cheap, plentiful carbon. You could almost make them from trees and grass, Prof. Khlobystov says.

“It’s never just one thing that nanomaterials offer; it’s always a whole set of different properties,” he says. “That’s what makes nanotechnology so exciting.”

Some of the biggest advances have been in medicine, with early diagnostics and other tools. Already, nanomedicine is being used for blood and breath analysis and to precisely measure the quantity of medicine in the blood in order to adjust the amount a patient needs to take.

Tumors might be detected more quickly, via blood tests. “It’s possible to use nanoparticles to make imaging technology much better, to image tumors,” says Dave H.A. Blank, scientific director of MESA+ Institute for Nanotechnology at the University of Twente in the Netherlands. “This is really growing fast.”

See Dave Blank’s fantastic TEDx Talk about nanotechnology:

YouTube Preview Image

A new approach includes a lab-on-a-chip that has tiny channels etched on it, so that 1/1000th of a drop of blood is enough to analyze.

“We can measure how the liver or heart responds to medicine,” he says. “The advantage is you can easily go through the body,” because of the small size.

In three or four years, a nanopill, containing a complete laboratory, could look for colon cancer. It would pump in material from the colon and could measure if there’s cancer, whether it’s at an early stage, and send information to a smart phone. The pill itself would be made of organic materials, and the electronic parts are silicon—which is just sand, Prof. Blank says, so there’s no damage to the body or the environment. “I expect that in five years there will be regulations that everyone take such a pill,” he adds.

An organ-on-a-chip is the next goal. “You take tissue from the lung, grow it and put it on the lab-on-a-chip or organ-on-a-chip,” Prof. Blank says. “You can look at oxygen behavior in the lung or blood in the liver or how the heart muscle responds to electric impulses. We can watch how cells communicate with each other.”

Nanotechnology also can make new materials. One of the most exciting is graphene, which is a two-dimensional substance made up of a single layer of carbon atoms. It’s flexible, durable and an excellent conductor of electricity.

Rubber bands coated with graphene could be used in medicine as cheap, flexible sensors. Graphene ribbons could act as semiconductors. Graphene and carbon nanotubes could lead to mobile phones so tiny and flexible they could be printed on clothing. Graphene oxide could reinforce concrete or be applied like paint to stop corrosion.

Why are we only now starting to discover so many new properties in something as common as carbon?

One reason is that matter at an atomic level has its own rules, which until recently were unknown to us. The discovery of atoms came from observations about them in large numbers, not as individuals. Advances in equipment—such as electron microscopy, scanning tunneling microscopy or atomic force microscopy—allowed researchers to see actual atoms, which are smaller than the wavelength of light .

Now we find that certain things may not be as we thought,” Prof. Khlobystov says. We once thought that a piece of gold was made of gold atoms and that all those atoms were the same. “They are the same if you look on the macroscopic level,” he says. “But as you start zooming in, you see that not all the atoms are the same. And there are defects, edges and faults.”

Beyond how atoms look is how they act on an individual level. “When you make things smaller, new physics and new properties kick in,” Prof. Khlobystov says.

The next challenge is to control chemical reactions between individual atoms, using carbon nanotubes as tiny test tubes. “They can produce new chemical products in a sustainable way and can produce entirely new materials,” he says.

*For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.

Stronger, Lighter, Cheaper

By Catherine

Written by Catherine Bolgar*
NanomaterialIndustrial materials involve trade-offs. Desirable qualities tend to come with undesirable flip sides. Strength, for example, tends to come at the expense of ductility, or the ability to stretch without breaking. So the stronger something is, the more it’s likely—ironically—that when it does fail, it fails completely.

What if you could have both high strength and ductility? This is likely to happen, thanks to breakthroughs in new materials, many of which involve building the materials in innovative ways at the atomic level.

A microscopic view of metals would show them as made up of grains. Stronger materials have smaller grains, and more ductile materials have larger grains, explains Yuntian Zhu, professor of materials science and engineering at North Carolina State University in the U.S. However, if you make an entire part with small grains for high strength, it might fail catastrophically under stress.

When you make any structure, you want at least 5% ductility. The more ductility, the safer it is. But the downside is that the strength comes down,” he says.

Dr. Zhu found that by forming steel with larger grains inside and gradually moving to smaller grains at the surface, the result has both strength and ductility. This gradient structure is found in nature, he says, for example in plants and bones.

Near the surface, it’s harder. As you go deeper it gets softer,” Dr. Zhu says. “Nature just puts raw materials where they’re needed most. It minimizes the material cost. In nature, that proves useful.”

Using a gradient structure in steel could extend the lives of bridges, ships and oil pipelines, for instance.

Hardening steel by working it is another technique to make steel that’s both strong and ductile. Twinning-induced plasticity—or TWIP—steel is strengthened by twisting, deforming, bending, flattening or hammering it. At Brown University, researchers twisted cylinders of TWIP steel to deform the molecules on the surface. The molecules in the center remained unaffected, providing the flexibility, while the surface got harder, providing more strength.

Usually when something is strong, it’s also heavy. What if you could have both strength and lightness?

Nicholas X. Fang, associate professor of mechanical engineering at the Massachusetts Institute of Technology, has developed a foam material that can withstand a weight 10,000 times greater than its own.

“It’s as light as aerogel, yet as stiff as a hammer,” he says. Much of the space between the structures is void, which is why the material is so light.

The material uses nanotubes or nanowires a quarter of the size of a human hair to form a network or structure that takes away the load. “Each of the nanotubes under the load are under compression or a stress state,” Dr. Fang says. “But they turn out to be quite resilient. In the lab, we compress the samples to 60% of their original size.”

Dr. Fang is contemplating applications for this new material. The material could absorb impact while reducing weight, for example, in a tennis racket that’s lighter than aluminum alloy, yet able to deliver similar strength against a bouncing ball.

It could be important for microstructures in batteries,” he adds. Batteries receive a lot of shock when charging, which causes the structure to suddenly expand—and corrode. “If we could use this material in a battery, we could solve the challenge of quick charging,” he says.

Satellites also could benefit from a material that’s very lightweight, to reduce the payload, yet able to withstand shocks.

Nanowires in three-dimensional structures also are being explored by researchers at the University of California, Davis. By combining atoms of semiconductor materials—such as gallium arsenide, gallium nitride or indium phosphide—into nanowires that form structures on top of silicon surfaces, they hope to create a new generation of fast electronic and photonic devices.

The nanowire transistors could be used to make sensors that can withstand high temperatures and are easier to cool.

polymer surfaceSomething everybody wants to be strong yet shatterproof is their smartphone screen. Researchers at the University of Akron in Ohio have come up with a transparent layer of electrodes on a polymer surface that could stand up to repeatedly having adhesive tape peeled off and retain its shape after being bent a thousand times. The new film may be cheaper to make than the coatings of indium tin oxide now used on smartphone screens.

In fact, in a number of cases, the materials or processes themselves aren’t necessarily expensive, which makes them likely to be adopted relatively quickly.

It’s actually quite easy,” says Dr. Zhu about making steel with a gradient structure. “The only thing is, can we do it in an industrial way or develop a technology to do it?” The cost is likely to be very low, and some in industry already are trying it.

“It might take a few years for widespread adoption,” he says.

The super-strong foam material developed by Dr. Fang isn’t expensive, but the manufacturing process is—at least for now. Only a few centimeters of the material can be made, which is a limitation of the printing process, not the material itself, Dr. Fang says. “Now it’s important to connect the dots to make it into a larger format at lower cost.”

*For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.

Prefabrication Productivity for AEC

By Akio


By Vicki Speed

From a residential high-rise in New York City to low-cost hotels in Europe, the application of prefabricated and modular objects and systems continues to capture the interest of owners, architects, contractors, fabricators and product manufacturers in the building industry.

Around the world, prefabrication proponents are finding ways to apply offsite construction techniques that go way beyond repeatable systems such as bathroom pods or mechanical pipe rack to more volumetric, pioneering, semi-customized solutions that address a wide range of common construction challenges.

In some parts of the world, like Japan and the United Kingdom, owners and project teams have necessarily moved to offsite construction methods because of land prices and the cost of labor,” said Ryan Smith, associate professor and director in the College of Architecture + Planning at the University of Utah (USA), and chairman of the National Institute of Building Sciences’ Off-Site Construction Council (OSCC). “Amortizing land is prohibitive in these countries, so owners favor methods that facilitate faster construction schedules. Labor is more expensive, also necessitating quick turnaround on construction duration.”

However, he added, the greater interest and application of offsite construction methods in recent years is largely driven by two ongoing challenges in the global construction industry: the need to improve construction productivity and skilled-labor shortages in some parts of the world.

North American Methods Shifting

Concerns about labor shortages are one of the primary reasons for increased interest in offsite construction in North America.

In its 2014 US Markets Construction Overview, FMI, a global provider of management consulting, investment banking and research to the engineering and construction industry, predicts that modularization and prefabrication will play an increasingly vital role in the US construction value chain because emerging demand is outrunning the availability of skilled tradespeople.

Meanwhile, many international contractors are looking to their European or Asian counterparts for ideas.

In our experience, prefabrication and modularization are primarily driven by our need to be more competitive and deliver a project at the lowest cost and schedule certainty – and the Mechanical, Electrical and Plumbing (MEP) subcontractors have taken the lead in delivering effective solutions for good reason,” said Don Goodrich, director of preconstruction services at Sundt, a construction company based in Phoenix, Arizona (USA). “The MEP trades are facing a considerable labor shortage. The increasing use of Building Information Modeling (BIM) helps bring the prefabrication conversation to the forefront as well.”

Deciding when to use a prefab approach is based on the challenges of a specific project, Goodrich said. “We’re translating prefab and modular techniques that we learn from one job to other jobs as much as possible,” he said.

In one case, Sundt transferred the modular technology approach from a private prison construction project to a much larger state prison project.


Modular construction at the Corrections Corporation of America’s detention facility in Otay Mesa, California (Image © Sundt Construction, Incorporated)

Global Multi-Trade Opportunities

Similarly, UK-based Balfour Beatty, an international infrastructure lifecycle services company, relies on prefabrication and modular methods to construct a number of different structures to achieve considerable value.

Some phases of the Queen Elizabeth Hospital in Birmingham, England, for example, were completed a year early. Likewise, Belgium-based Inter IKEA Group, parent company of the IKEA furniture brand, teamed with Marriott International, a hospitality company headquartered in Bethesda, Maryland (USA), to create low-cost prefabricated hotels in Europe.

FMI Senior Consultant Ethan Cowles expects the use of prefab and modularization to grow quickly in health care, lodging and education, as it already has done in the fast food market.

OSCC’s Smith agrees. “We see full volumetric prefabricated construction mostly with owners of smaller structures, some housing and some industrial markets,” he said. “Owners of fast-food franchises, automotive service centers, daycare, data centers, hospitals, multi-family and mid-rise structures, and others with repeatable structural requirements, are becoming more engaged in design-build and integrated delivery and are not so dependent on open bid requirements.”

Looking ahead, Cowles and Smith point to growing interest and demand for multi-trade prefabrication and modularization.

“The success of a multi-trade scenario will depend on the owner seeing value and capable contractors coming together contractually to maximize the benefits,” Cowles said.

Rethinking Conventional Practices

Despite the promise that prefabrication and modularization holds for the building industry, the approach is not without wrinkles – as witnessed by the lawsuits related to New York’s B2 Tower project.

Cowles and Smith noted that offsite approaches inherently require early coordination and decision-making to maximize the value.

Offsite construction also requires that owners, architects and contractors rethink the conventional processes that have been industry standards for decades.

“The building technology and methodology for offsite construction is not mysterious,” Smith said. “There’s very little technical challenge or complexity to the process, very little intellectual property, relatively speaking, in comparison to other manufacturing industries. The challenge has more to do with tacit knowledge related to the social, political, regulation and economic context in which offsite construction unfolds.”

Integrating prefabrication and modularization into the construction build cycle adds value, but it’s not a panacea, Smith said. “I don’t see these methods adopted on every project; but, most certainly, as components of an overall project build to minimize labor, increase productivity and improve schedules – in short, to add value.”

PREFABRICATION PRODUCTIVITY by Vicki Speed originally appeared in Compass: The 3DEXPERIENCE Magazine

Related Resources

Lean Construction Industry Solution Experience 

Collaborative and Industrialized Construction

Page 30 of 243« First...1020...2829303132...405060...Last »