How to Stay Competitive? Develop Smart Appliances in the Era of Experience

By Estelle

Smart Home Device - Home Control

It is no secret that smart home appliances now are very complex.  No longer is a TV just a TV, or a refrigerator just a refrigerator.  Each smart home appliance needs to be digital, and it needs to interact with people or at least with other machines and devices.  It is connected to the Internet and has a variety of sensors.  It needs to collect data and give you more information, all the while lessening the need for you to actually do something to operate it.  You enter the room and your air conditioning is already up and running, keeping the room at an already comfortable temperature.  You drive up your block and your garage door opens automatically, while also turning on your lights and your TV to the channel that you always watch at that time of day.

It is no wonder IBM found that 71% of global CEOs(*)  now say that technology is the biggest external force that could impact their businesses within the next three to five years.  Most manufacturers now need to prove their competency by developing high technology products in order to stay in the competition. Otherwise, it will be your competitors who are going to give your customers the features and functionality that they want and need.

That is, of course, easier said than done.  In order to make smarter home appliances, you would need to have engineering proficiency in a wide array of areas such as software, mechanical, electrical, fluid, electronics, software, and other specialized areas.  It is not easy to excel in any of these fields, but having the knowledge is already a small part of your success.  You need to know how to bring all of these competencies together to meet what is required of your smart home appliances, as well as figure out what problems to solve and what technologies to use.

Today’s competitive manufacturer knows that looking at individual features and functionality is no longer enough.  You also need to focus on experience as well as product benefits.  Focusing on experience, you would need to know what your customers want to feel, to touch and to see, and how all of these affect their actions and emotions.

To stay competitive, you would also need to use big data to discover your customers’ preferences, even those that were not available before.  Then you would need to be able to translate these insights, experiences, and preferences into product attributes, such as energy consumption, usability, capacity and performance.

Once you know what attributes you would want your smart home appliance to have, you should be able to communicate these specifications to your design teams simultaneously and automatically.  This would mean that all your different design teams for software, mechanical design, electronics and other areas would get the attributes you need and want at the same time.

From there, you should be able to make trade-off decisions on how your design would be met by each of these design teams.  You should also strive to shorten your development time while ensuring that all your design needs are met, by using social collaboration tools and workflow.

And while work is in progress, you should be able to assess and monitor everything in real time.  Furthermore, you would need a virtual simulation of your products’ first prototypes.  This way, you would still be able to fine tune or revise everything that needs to be changed in your product design while still bringing down your development costs.

In short, traditional manufacturing concerns really need to transform their operations into high tech product development companies with the help of solutions such as Dassault Systemes’ Smarter, Faster, Lighter solution.  This way, you can transition into a more competitive and high tech manufacturing company by helping you define processes using established systems engineering principles.  These solutions also allow everybody working on the project to collaborate on your products, thereby making it easier to share knowledge and process that ultimately helps you produce a product that your customers will love.

Interested in #IoT and #SmartHomeJoin Dassault Systèmes, Panasonic, GE and Parks Associates, for strategies to transform product management in the #IoT: February 3: http://bit.ly/DassaultCast

(*) CEOs-IBM-Survey-2012

The Living Heart Project: Remarkable Progress Achieved Through a Common Goal to Improve Cardiovascular Disease Outcomes

By Helene

LHP-zSpace-Demo-Zygote-Heart-hi-res_600

Steve Levine, Chief Strategy Officer for SIMULIA Dassault Systèmes, is passionate about bringing cutting edge technologies from different disciplines to doctors and the patients they treat. In a recent recorded presentation at the 3DEXPERIENCE Forum in November 2014, Levine outlined the need for utilizing these technologies to build better human anatomical models, stating that 95% of all medical devices released to the public have never been tested on the human body.

The Living Heart Project was launched publicly in May 2014 to develop the world’s first realistically functioning computer model of the human heart. This project has made tremendous progress, and the video referenced above includes Levine and Dassault Systèmes President and CEO Bernard Charlès announcing a 5 year collaboration with the Food and Drug Association to develop cardiovascular testing paradigms.

The Living Heart Project relied on Dassault Systemes 3DEXPERIENCE platform to bring together more than 100 cardiovascular specialists from 30 organizations to develop and test the model. In the video, Levine commented that at the outset, bringing together researchers, doctors, medical device companies, and regulatory agencies was a challenging task as information is siloed. The 3DEXPERIENCE platform allowed the specialists to crowdsource the heart model, with each bringing their expertise without sacrificing intellectual property.

The video shows impressive visualizations of The Living Heart model that are, pardon the pun, heart stopping. Levine points out in his presentation that it is the first four chambered 3D heart model that is based on commercially available, validated technology. He also showed that the model can be viewed in different ways, highlighting mechanical stresses important for indications such as heart failure as well as visualizing electrical conductivity which is important for studying heart arrhythmia. Levine also showed how collaborations within Dassault Systèmes were instrumental to visualize The Living Heart in 3D, as a “walk in” model. Additionally, 3DEXCITE provided true to life coloring and features to aid medical students and surgeons.

Levine went on to tell the story of Emily, a girl born with a heart that is literally “backwards,” with right and left ventricles transposed. As the earlier 3D models Levine showed in the presentation illustrated, the heart is not symmetrical, so this defect has caused Emily to have 4 pacemakers by the age of 20. In May 2014 an animated video showed Emily’s story and how the The Living Heart would help diagnose and treat her. Emily’s story is particularly touching for Levine to relay, and the reasons are best explained by him, so we encourage you to watch the entire video of his talk to learn why.

Levine talked about the collection of resources available at 3ds.com/heart which helped to describe the vision of the Living Heart Project to collaborators and to illustrate their progress.  He sees the project as a model to unite other healthcare specialists, medical device companies and regulatory bodies to collaborate around aspects of human anatomy or disease models. The 5 year collaboration with the FDA will increase the number of participating organizations from 30 to 100 and will continue to involve the Medical Device Innovation Consortium of which Dassault Systèmes is a key sponsor.

SOLIDWORKS and PLM: No Fear Required

By Matthew

ENOVIA to SOLIDWORKS

Thinking about using SOLIDWORKS in a PLM environment? As FDR once said “We have nothing to fear, but fear itself’. The biggest fear is that your designers will revolt in the face of having to work inside a complex management environment that will force them to change the way they work.

We get this. PLM systems are typically complex and require your users to spend an inordinate amount of time on non-value added activities, such as ‘check-in’ and ‘check-out’. And why should a designer change the way they work? They have already established practices and methods that have helped them to be innovative and productive. I would not want to be the IT person telling them that they now have extra work to do!

At Dassault Systèmes, our 3DEXPERIENCE platform offers a fresh approach to this problem. Recognizing that our existing Enterprise PDM solution has been greatly accepted by the design community, the same R&D group has designed a new product that offers the usability of EPDM but actually stores the data in a broader and more capable PLM solution. The result is the SOLIDWORKS Collaborative Innovation Connector, a product that works and acts much like a workgroup solution would but gives the designer just enough access to the PLM functionality to innovate their processes beyond what they can do today in a PDM environment.

If you’ve can give us 6 minutes, we’d love to show you how SOLIDWORKS connected to the 3DEXPERIENCE platform can help increase productivity and design collaboration within design and across the enterprise. Join us for a webinar on this solution at: http://www.3ds.com/products-services/enovia/resources/enovia-solidworks-connector/

YouTube Preview Image

Also, please register for SOLIDWORKS World 2015 that will be held in Phoenix, Arizona: Feb 8-11.  The registration page for that event is still open and as a registered attendee, you are eligible to join the ENOVIA Collaborative Design with SOLIDWORKS User Group Meeting that will be held on Feb 9, 12pm – 1:30pm.  Register for that event at this link.

At this ENOVIA/SOLIDWORKS user group meeting, you can meet ENOVIA experts from Dassault Systèmes, other experts from around the world and share your thoughts, experiences and get questions answered from the assembled experts!

SW World 2015

Hope to see you in Phoenix!  :D

Matthew J. Hall

Matthew J. Hall

Matthew Hall is the ENOVIA User Advocacy & Social EXPERIENCE Specialist.  You can find him on Twitter at @mjhall. Connect with ENOVIA at @3DSENOVIA



Page 3 of 21412345...102030...Last »
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.