Leveraging “Design For Manufacturing” for More Sustainable Buildings

By Patrick
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

This blog is adapted from an AIA presentation on Technology and Practice presented in partnership with the UNC Charlotte College of Architecture in October 2016.

clicktotweetClick to Tweet: Leveraging “Design For Manufacturing”
for More #Sustainable Buildings


Design for Manufacturing is a process whereby designers consider the impact of manufacturing processes in the way they design buildings.

Large components—whether large concrete panels or whole modular rooms for an apartment building—might be completed within a factory environment and delivered to a jobsite where they are connected to MEP systems.

To be successful in this approach, designers must work with building component manufacturers to understand their capabilities and design a construction approach that accounts for the logistics of getting modules to the jobsite and installed.

By considering how to optimize factory processes and then most efficiently assembling the modular elements in the field, designers can leverage strategies that greatly eliminate construction waste.

With reduced waste, building owners can adjust their budgets and apply significant savings from improved processes to better materials and overall more sustainable buildings.

The Two Paths to Reducing Construction Costs

clicktotweetClick to Tweet: The 2 Paths to
Reducing Construction Costs

Construction projects typically see amounts of waste near 30% due to redundant rework and inefficiency. Without this waste, building owners could achieve significant project savings and reinvest in higher quality materials that are less harmful to the environment.

There are two potential approaches to reducing costs in construction:

  • AEC professionals can continually look for cheaper materials and labor to control construction costs. For example, vinyl is a very popular building material, largely because it is inexpensive compared to wood and other solutions. Yet PVC is made from chlorine salt using lots of electricity in a very environmentally unfriendly process.
  • Alternatively, AEC professionals can change their processes. By adopting a Design for Manufacturing approach, fabricators can automate many of the repetitive tasks that have to be done to produce a building. Fewer, albeit more highly skilled, workers can manage building component production in a safe, factory environment.

The latter approach may require a greater upfront investment, but the return on that investment can be recouped through the dramatic reductions in waste. Those savings can, in turn, be applied to investment in more sustainable building solutions.

Reinvesting Savings in Sustainability

clicktotweetClick to Tweet: Reinvesting Savings in Sustainability

Green projects are projected to grow significantly in the years ahead. At present, buildings consume 70% of all electricity in the United States, reports the U.S. Green Building Council. There are numerous ways to reduce this electric consumption, but most AEC professionals consider building products rather than building processes as a solution.

Designers’ strategies for achieving sustainable design might range from making tighter envelopes that require less heating and cooling, adding solar panels, using smart lighting controls, to numerous other initiatives.

In the UK and some other countries, laws limit buildings’ greenhouse gas emissions. In some parts of the U.S.—namely, California—there are some emissions limitations set by law, but most green building is done in the name of incentives such as LEED or the 2030 Challenge for Sustainability, among other programs.

But for owners and AEC professionals that truly care about green buildings, it is important to also consider a clean AEC process.

A Design for Manufacturing approach to AEC could potentially lead to cleaner processes than traditional onsite construction.

clicktotweetClick to Tweet: Leveraging “Design For Manufacturing”
for More #Sustainable Buildings

Related Resources

Design for Fabrication Industry Solution Experience

Immersive car buying experiences with DS Automobiles

By Alyssa
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

DS Automobiles, the luxury division of PSA Group, has a mission: develop an end-to-end digital system of communication, distribution and sales that allows them to present their entire product line via immersive experiences and to know their customers in great detail to anticipate their needs and desires.


Launched in early 2015, the company is all about embracing the digital world; they even broadcast their brand launch press conference live on Facebook. At the 2016 Geneva Auto Show, DS Automobiles was showcasing their new DS3. They did so by allowing attendees to put on an HTC Vive headset which would allow them to experience what it would be like to sit behind the new supermini. Through this highly immersive, realistic and complete virtual experience, customers could easily imagine the possibilities by allowing them to envision themselves in the car in real-world situations. They were also able to see how easy (and fun!) it would be to personalize the vehicle. The DS3 offers more than 3 million combinations, from the dashboard to the upholstery to the mirrors and more. Consumers can configure the car, and then virtually experience it to make any changes before purchase.


DS Automobiles hopes this will help them sell more cars more easily and more quickly, as well as help them capture knowledge to develop future solutions. They were pleased to tightly partner with Dassault Systemes to bring their “DS Virtual Vision” to life, leveraging the 3DEXPERIENCE platform and its Virtual Garage Industry Solution Experience o harness all data, connect key stakeholders and create these immersive experiences with efficiency.

Watch now a video on DS Automobiles’ DS Virtual Vision. You can also read an article written by DS Automobiles’ Executive Director, Global Sales & Marketing, Arnaud Ribault, in the latest issue of Dassault Systemes Compass mag that explains the mission of DS Automobiles in his own words.


(Images © DS Automobiles) 

Up, Up and Away

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+


By Catherine Bolgar

What’s faster than a ship or train, more eco-friendly than a plane, and doesn’t use roads, rails or ports? Huge airships, which may soon ferry cargo from point to point.

“A state-of-the-art logistics system is always dependent on infrastructure,” says Igor Pasternak, chief executive and founder of Worldwide Aeros Corp., a Montebello, California company developing a cargo airship called the Aeroscraft, which would be bigger than any current plane. “We don’t have a problem with trains; we have a problem with how far and where the rail goes. We don’t have a problem with trucks; we have a problem with enough roads. We don’t have a problem with ships; the problem is ports.”

Airships “will create a new transportation system. Air is the ocean and the port can be anywhere. You can reach any point from any other point. It will be a new way of living,” he says.

The Aeroscraft isn’t like the familiar blimps, although the shape is similar. The exterior is made of a rigid shell of fiberglass and carbon-fiber composite about two millimeters thick, similar to an airplane.

That means that although the Aeroscraft looks like a giant balloon, it wouldn’t fare any worse than a plane in a collision with, say, a bird. “It isn’t sensitive,” Mr. Pasternak says. “You could have a huge hole but you wouldn’t lose helium fast because we don’t keep the helium under pressure. A leak would be slow. As the pressure drops outside, it also drops inside.”

The Aeroscraft cargo models are huge: 169 meters to 280 meters long (555 feet to 920 feet), 54 meters to 108 meters wide (177 feet to 355 feet) and 36 meters to 65 meters tall (120 feet to 215 feet).
photoupdateInside, separate containers, made of high-performance multilayer fabric, hold nonflammable helium. The Aeroscraft operates like a submarine in order to land, Mr. Pasternak says. The pilot compresses the helium to make it heavier than air, and fills the empty space with outside air for ballast.

This technique solves airships’ biggest problem: if you unload 100 tons of cargo, you suddenly have 100 tons of lift, which must be offset with ballast. “It was practically impossible,” Mr. Pasternak says. “It’s why we have no cargo airships, even though they were invented before airplanes.”

Aeros’s technology allows its airship to take off vertically, like a helicopter, or hover for hours over a point on the ground without having to be tied down. The cargo is suspended inside the rigid shell with the helium balloons—and the cargo bay is bigger than any current commercial cargo aircraft. The different airship models can carry payloads ranging from 66 tons to 500 tons.

The Aeroscraft travels at 193 kilometers per hour (120 mph), but could save time, compared with planes, because cargo could be delivered directly to the final destination without having to be unloaded at the airport, then shifted to trucks and driven. “You might see 250-ton airships coming with cargo to a warehouse,” he says.

An airship can stay aloft forever because it doesn’t require energy to stay in the air, he adds. It’s propelled by an electric motor, with the electricity generated by fuel such as hydrogen, natural gas, or diesel. The hydrogen option is “basically like a fuel cell,” Mr. Pasternak says.

We can create transportation means with zero emissions.”

In a feasibility study, the Aeroscraft traveled 12,000 nautical miles (22,224 kilometers) in seven days. “We don’t need anything more than that,” Mr. Pasternak says. At its widest, the Pacific Ocean is 19,000 kilometers; Shanghai to Los Angeles is 10,428 kiliometers.

crew-prep-1Airship operation is similar to that of a ship, rather than a plane: it requires only two people to operate it, and even then the captain just needs to be available and not necessarily in the seat every minute. But a weeklong trip would require a bigger crew than two, so the crew quarters have bedrooms, similar to cabins on a ship.

An airship can ride out bad weather—its size means it is much less subject to turbulence than a plane—but afterward the structure would need to be inspected, Mr. Pasternak says. Alternatively, it can just go around storms rather than through them.

Cargo airships hold potential for defense applications, and Worldwide Aeros has received about $60 million in grants from the U.S. Defense Advanced Research Projects Agency, Mr. Pasternak says.

Airships also could be used to ferry humanitarian aid to areas hit by natural disasters, where transportation infrastructure has been destroyed.

But another application could be commercial, allowing for trade in goods in currently remote locations. “The major problem in development is you don’t have infrastructure,” Mr. Pasternak says. “An airship would allow a factory to go to Africa. You don’t need to build a railroad or a road” to transport the production to market.

The Internet revolutionized the quantity of information available anywhere, compared with libraries that were limited by the number of books they could hold, Mr. Pasternak says. Similarly, the airship will revolutionize distribution by giving anybody anywhere access to a transportation network, he says, adding, “It’s a new way of delivering.”


Catherine Bolgar is a former managing editor of The Wall Street Journal Europe, now working as a freelance writer and editor with WSJ. Custom Studios in EMEA. For more from Catherine Bolgar, along with other industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of Aeroscraft a

Page 20 of 309« First...10...1819202122...304050...Last »