The routes of the future

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

Written by Catherine Bolgar

There’s more to transportion innovation than self-driving electric vehicles.

From high-tech cycle lanes to supersonic space planes, the future of travel is on course for a design revolution. Start with the humble bike. With city cycling now all the rage, road infrastructure is set for some radical innovations. London-based architecture firms Foster + Partners and Exterior Architecture, for example, jointly proposed a bike deck, called SkyCycle, that would be built above 220 kilometers of existing rail tracks thereby connecting central London to the suburbs, and making it more attractive to live near a rail track.

“When we built the railways, they originally were designed for steam trains, with nearly flat grades,” says Huw Thomas, partner at Foster + Partners. “They were noisy and nobody liked living near them. They were lost in the urban fabric, but they go from the city’s edge to extraordinary nodes in the city center.”

More than four million people live within a 10-minute bike ride of SkyCycle’s proposed route, half of whom are commuters, Mr. Thomas says. SkyCycle would cost an estimated £6 billion ($9 billion) to £8 billion to build. The deck could integrate smart networks without streets having to be dug up. And it could even include a lane for roboticized package delivery.

Bikes themselves are also likely to undergo modernization. Lisbon-based designer David Miguel Moreira Gonçalves has developed two electric-assist bikes, the Grasshopper and the Cruiser, for use in Portugal’s hilly capital. “The Grasshopper is a foldable electric bike that can be used with a car or with public transportation,” he says. It can even be used at home to generate electricity by placing it on a stand and pedaling.

Every part of the bicycle’s life is justified,” he says.

But the idea for which Mr. Gonçalves has had most attention is his futuristic concept car, the Scarab, which won the 2010 Michelin Challenge Design. He wanted to create an electric vehicle that could use existing infrastructure and serve as either a personal car or shared transport. Driven by robotics, it would use facial-recognition software to identify and stop for specified passengers, while GPS and tracking would get them to their destination. It could even park vertically to save space. “It’s a very utopian idea,” he says.

Another idea, Next, envisages swarms of self-driving pods that link and delink on the move, while passengers can pass through interconnecting sliding doors to the specific pod that’s going their way. Meanwhile, Transport Systems Catapult is testing their own self-driving pods in Milton Keynes, U.K., with 40 expected to be in use by 2017.

At sea, Juliet Marine Systems Inc. of Portsmouth, New Hampshire, in the U.S. has developed the high-speed Ghost, a small waterplane area twin-hull (SWATH) vessel. Using microbubbles and supercavitation, Ghost creates an air bubble around the hulls which reduces friction up to 900-fold, increasing speed, says Gregory Sancoff, president and chief executive of Juliet Marine.

Besides military applications, Ghost could have recreational or commercial uses. For example, Ghost’s stable technology might be ideal for high-speed ferries crossing the powerful Gulf Stream, Mr. Sancoff adds.

iStock_000005775678_SmallAir travel is also set to speed up, with a supersonic plane that could fly halfway around the world at Mach 5, powered by the revolutionary Sabre engine. The Sabre-powered Lapcat A2 concept, under development by Reaction Engines Ltd. of Abingdon, U.K., would fill the gap for supersonic passenger travel left by Concorde’s demise in 2003.

The Sabre engine can also power space vehicles, such as Skylon, a reusable space plane that could carry satellites into orbit or supply the International Space Station. “The approximately 100 space flights each year now cost $100 million to $200 million apiece, because the rockets are used only once,” says Richard Varvill, Reaction Engines’ technical director.

However, Sabre-powered launch vehicles like Skylon would cut current launch costs about 90%, he says. The U.K. government has pledged £60 million to develop the Sabre engine, alongside a £20 million investment from BAE Systems PLC, Mr. Varvill says.

Unlike the space shuttle, which launched vertically and included an orbiter with a large external fuel tank and two solid rocket boosters which dropped away, Skylon is designed to take off and land like a plane and be completely self-contained.

The Skylon could carry a 15-ton payload and could reach low Earth orbit in 15 to 20 minutes. “It will make getting into space cheaper and safer,” Mr. Varvill says.



Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of iStock

The Inside Track for Transport Designers

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

Written by Catherine Bolgar


Global car ownership passed the one billion mark in 2010, with more than one vehicle per person in the U.S. and much of Europe. Yet despite the fact that Europeans and Americans waste an annual average of 111 hours in traffic jams, public transportation ridership rose only 8% in the European Union and 15% in the U.S. and Canada between 2000 and 2012

Why don’t we design an experience that would beat cars?” asks Bruce Mau, co-founder of Massive Change Network, a Chicago design studio. “Let’s make something that’s exciting for people and makes them want to use it.”

Underground metro systems have installed art, Wi-Fi and heated seats; bus services are now trying similar approaches. Some Paris bus stops, for example, now boast Wi-Fi and charging stations, coffee, bus ticket sales and neighborhood information.

But buses are fighting against the so-called track effect. “People seem to consider vehicles running on tracks as more solid, almost no matter what you do to improve bus services,” says Andreas Røhl, an urban-transport specialist at Gehl Architects in Copenhagen.

If you put in tracks, people will know or feel that this will stay here, it’s a permanent thing,” he adds. “If you’re a developer, then you’re sure this new mode of public transport will stay here.”

Planners can, however, overcome such concerns. Curitiba, in southern Brazil, for example, applied designs used in metros to buses in the 1970s, to create bus rapid transit (BRT). The city’s long, articulated buses run along an exclusive road corridor. They have extra doors to speed access. Tube-shaped bus stations are raised so passengers don’t need to climb steps to board, and fares are paid on entering the station, rather than the bus, further saving time.

“They got the carrying capacity of a subway at about one-hundredth of the cost,” Mr. Mau says.

About 70% of Curitiba commuters take buses, which carry as many as 11,000 passengers per hour during peak times. And that pales compared with Bogotá, Colombia, which tops the BRT ridership ranks with 45,000 passengers per hour. BRT has now been adopted by more than 150 cities world-wide.

This level of efficiency is possible thanks in part to better vehicle interior design, which varies according to local need, says Andrew Nash, director of Vienna-based For example, urban vehicles should be open, with few seats, so people can get on and off quickly, while on suburban routes, riders sit for longer requiring more comfortable seats, he says.

Although comfort and convenience are important, designers cannot just focus on amenities. Mr. Nash recalls a San Francisco company whose buses were fitted with Wi-Fi and USB ports, which went bankrupt after just two months.

Instead, design needs to optimize processes such as more efficient fare-collection machines, and information technology that provides precise arrival information, he says. Applications such as Ridescout lay out a range of travel options, such as walking, biking, driving and public transportation, and calculate the time, money and calories involved.

“Life in the city is increasingly about using different choices at different times,” says Jarrett Walker, president of Jarrett Walker & Associates, a public-transit consultancy in Portland, Ore., and author of the book Human Transit. “It gets us away from imagining that transport options are like teams we belong to: bus riders or bikers or drivers.”

It’s important therefore that we “don’t assume that some sort of design choice—a nicer bus, Wi-Fi, nicer shelters—solves public transport’s problem,” Mr. Walker says. “The problem may be that the service is just useless, that it doesn’t run where needed or at times it’s needed. Network planning has to make sure it’s useful for people.”

“Useful” generally means “frequent,” he adds. “The biggest problem is waiting. We have to design the network around frequency.”

To have frequent and full buses, public transportation needs high-density urban areas, where parking is expensive and inconvenient, and where access to public transit is just a short walk away.

Urban planners can increase density along mass-transit corridors, as has happened, for example, in Toronto as well as Curitiba. “There are ways you can control development around the transit,” to put riders near lines, Mr. Mau says. “That kind of density management is what transit people should be designing.”

In this way, we can challenge the widespread assumption that car travel is always fastest, followed by metro trains or light rail, with buses the slowest. Bus rapid transit in city centers averages 16 to 18 kilometers per hour (kph), which is faster than the 12 kph average of cars in Beijing, though slower than the 25 kph in New York and Singapore. Buses can travel as quickly and reliably as subways if given dedicated corridors, Mr. Walker says.

In fact, it is cars that tend to slow mass transit, by double-parking, blocking tram tracks or just generally creating traffic jams.

It’s not fair that one person in a car has the same right to road space as 50 people in a bus,” Mr. Nash says. “But it’s politically difficult to say we’re giving priority to buses because there are more people on them.”


Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of iStock

Test tube transport: the Hyperloop nears reality

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

Written by Catherine Bolgar, in association with WSJ custom studios


Source: Hyperloop Transportation Technologies

Source: Hyperloop Transportation Technologies

Imagine traveling in capsules sucked through a tube using low air pressure and magnetic acceleration to achieve speeds of up to 760 miles (1,223 km) per hour. That’s the idea of the California Hyperloop, which could eventually cut the travel time between Los Angeles and San Francisco to a mere 30 minutes, compared with today’s one-hour flight or six-hour car journey.

As soon as next year, a full-scale test track will begin construction in Quay Valley, a proposed sustainable community located between California’s two major metropolises.

The Hyperloop is a system that not only makes sense because it’s cheaper to construct, but it’s also sustainable so it’s cheaper to run,” says Dirk Ahlborn, chief executive officer of Hyperloop Transportation Technologies, Inc. “It changes the world.”

Tesla founder Elon Musk first laid out his Hyperloop vision in 2013 and invited others to take up the challenge. Turning the idea into a full-scale model in just three years may seem fast, but, as Mr. Ahlborn points out, it took a decade to get to the moon—“a way more difficult task,” he says. “The Hyperloop technology sounds like science fiction but, in the end, everything we’re doing already exists. The Quay Valley track is necessary to find out how to optimize the technology.”

The Hyperloop concept is similar to the pneumatic tubes used by banks to carry cash and documents, except that the passenger capsules would be sucked through the tube by controlled propulsion. A capsule (with large doors for speedy boarding) would enter a tightly sealed exterior shell. The tubes would probably be constructed from steel—although other materials, including fiberglass, are being considered—and covered with solar panels to supply the system’s energy. Low air pressure—of around 100 Pascals—would reduce air resistance inside the tube, while magnetic levitation and an air cushion would allow the capsule to hover above the tube’s surface. The straight track would further aid speed. As on a flight, passengers would sense how fast they are moving only when the capsule accelerates, slows or turns.


Hyperloop. Source: Forbes

Hyperloop. Source: Forbes

The Quay Valley track will allow engineers to work out optimum capsule size and boarding procedures. Each capsule is currently expected to seat 28 passengers and depart every 30 seconds during peak times, allowing a full-size Hyperloop to transport some 3,360 passengers an hour.

The Hyperloop would be elevated on pylons, making it possible to place the route above existing infrastructure such as highways, while also simplifying the process of obtaining right of way and minimizing the environmental impact.

More importantly, the pylons would be flexible enough to withstand earthquakes, in the way that pylons built in the 1970s to carry Alaska’s oil pipeline have proved resilient to such shocks, Mr. Ahlborn notes. As an enclosed system, the Hyperloop would also be impervious to harsh weather.

Perhaps more revolutionary than the technology is the way the Hyperloop team itself works. As well as partnering with companies and universities, more than 300 experts from 21 countries have been brought onto the team, working remotely online. Although they don’t get paid—most hold day jobs as engineers—they do get company stock options. “They’re driven by passion,” says Mr. Ahlborn.

The Hyperloop is groundbreaking in a commercial sense, too. It is expected to cost $16 billion to build, versus $68 billion for a comparable California high-speed rail line. Ticket prices for the Los Angeles-San Francisco stretch, at $20- $30, would be far cheaper than flying, and even that business model is open to disruption. “Do we need tickets?” asks Mr. Ahlborn. “Or are there other ways in which we can generate enough income.” Maybe the Hyperloop could “make more money having more people ride and we can say it’s free. Or maybe it’s free at certain times, and at peak times it costs a bit,” he adds.

The Hyperloop turns conventional infrastructure on its head, from its technology to its crowdsourcing. “Usually these things are done behind closed doors in a boardroom. We’re trying to be open. We’re using the community to do everything,” Mr. Ahlborn says. The Hyperloop “is a first for a lot of things.”

For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion.

Page 1 of 512345