The Promise of Precision Medicine

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

By Catherine Bolgar

Medicine is moving away from a one-size-fits-all model.

Precision medicine, sometimes called personalized medicine, holds so much promise that the U.S., China, and France have announced massive investments in this field over the past year.

“Precision medicine, we contend, has the potential to result in systemic savings,” says Christopher J. Wells, communications director at the Personalized Medicine Coalition (PMC), a Washington nonprofit organization representing scientists, patients, providers and insurers. “Now, medicine is by trial and error. You try one treatment and if doesn’t work, you try another.

The power of precision medicine is that if you get it right the first time, everybody benefits.”

IV solution in a patient hand and IVS machinePrecision medicine has made the biggest strides in oncology, where time is of the essence and chemotherapy drugs have strong side effects. For example, some breast cancers may be resistant to treatments such as trastuzumab. But that chemotherapy drug is very effective for breast cancers caused by the HER2 mutation.

No two cancers are the same,” says Susanne Haga, associate professor of medicine at Duke University in Durham, N.C. “They may be the same with respect to their tissue origin. But each person has a unique set of mutations that give rise to uncontrollable cell-division cycle, or cancer. With that in mind, each person would have some commonalities with other patients but also some unique qualities.”

However, the majority of patients still don’t receive personalized care, notes Mr. Wells. The PMC notes that a previous study has demonstrated chemotherapy use would drop 34% in women with breast cancer if they had a genetic test of their tumor before treatment.

With cystic fibrosis, “we thought it was one disease,” says Euan Ashley, associate professor of medicine at Stanford University in Stanford, California. “But as we dig deeper with genetic sequencing, we find it’s many diseases. If you can subcategorize patients, you can treat a disease much more effectively.”

Dr. Ashley’s specialty, cardiovascular disease, is the leading cause of death globally. “So we tended to do very large population studies, giving the same drug to everyone,” he says. “But if you study closely afterward, you see that a small number of people drive the effect—they get a significant benefit. Many get no benefit. And a few get significant harm.”

Precision medicine is prompting different ways of thinking about populations and individuals. “The answer has to be to measure people in as high a resolution as we can and work out who is responding and why,” he says.

With the cost of developing a prescription drug at about $2.6 billion, pharmaceutical companies have a big interest in seeing that the drugs they make get tested on the right segment of patients. A drug could appear to have no effect, when in fact it’s highly effective but only for a smaller number of patients.

Scientist woman“Drug companies now are building precision medicine into their research-and-development strategies,” says Mr. Wells. Personalized medicines accounted for 28% of novel new drugs approved by the U.S. Food and Drug Administration in 2015, and for 35% of novel new oncology drugs. Novel new drugs go beyond improved formulations or new dosages to deliver truly innovative advances.

Meanwhile, pharmacogenomics looks at how different people metabolize drugs. “There are a number of genes that are particularly active in the liver,” says Dr. Haga of Duke, adding that there are many variations of these genes among people. “We can test whether a patient metabolizes fast or slow and, if necessary, can prescribe a different drug that goes through different pathways so the affected genes aren’t involved.”

This test is valid for life, because one’s genes don’t change. Some institutions are trying to incorporate the information into electronic medical records, so all the different doctors and specialists one might see—as well as pharmacists—would be more knowledgeable, for prescribing drugs.

Because the cost of genetic sequencing has fallen dramatically, to about $1,000 today for a genome from $100 million in 2001, some are asking why everybody doesn’t get tested. It could speed up treatment for cancer patients or could allow for early intervention to arrest development of certain other diseases.

The U.S. National Institutes of Health devoted $25 million to four projects of genetic sequencing in newborns over five years with the goal of diagnosing conditions at the start of life. China just launched a project to do genetic tests on 100,000 newborns over the next five years, to improve treatment strategies and patients’ quality of life.

“The technology is going to continue to improve,” Mr. Wells says. “But already we’re at a point where the scientific advances are incredible.”

 

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe, now working as a freelance writer and editor with WSJ. Custom Studios in EMEA. For more from Catherine Bolgar, along with other industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of iStock

Power to the Patient

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

By Catherine Bolgar

Senior Patient Having Consultation With Doctor In Office

The explosion of chronic diseases threatens to be a major health issue in coming years, especially with the baby boomers entering old age. Getting patients to participate in, and assume responsibility for their own care, is key to keeping health care costs in line. In 2050, the number of people older than 60 is expected to reach 2 billion.

Indeed, health budgets are under pressure in all countries, causing a rethink of how to structure the way it’s delivered and paid for. For example, both the U.S. and U.K. are moving toward value-based or outcome-based care, with incentives for providers to coordinate care and improve quality of care, rather than payment based on the number of procedures done.

“The key word is going to be patient engagement,” says Felipe Lobelo, associate professor of global health at Emory University in Atlanta. “That means not just taking care of someone who’s sick, but also preventing someone from getting sick in the first place. The health-care system is going to be more proactive in working with people to make healthy choices.”

Doctor and patientOne study found that having a voice in decision-making led patients to better adhere to treatment, with better outcomes. Another found that patients who used online systems to see test results, manage their medication list and exchange secure messages with their providers felt more in control of their own care and were more satisfied.

“The bigger challenge is what to do to keep patients well,” says Phil Koczan, chief clinical information officer at UCL Partners, a health-science partnership linking higher education and National Health Service (NHS) members in the U.K.

The difficulty is how to identify those patients, many of whom don’t see a doctor on a regular basis, and how to change their behavior.”

Five key behaviors are related to avoiding chronic disease—never smoking, regular physical activity, no or moderate alcohol consumption, normal weight and enough sleep. In a recent study, only 6% of Americans do all five.

While physicians try to offer advice and support to people with risky behaviors, “it’s quite difficult and time-consuming, and resources are limited to offer that sort of support,” Dr. Koczan says. “But there’s a lot of benefit if we can get it right.”

Wearable devices and mobile applications can help—if patients stick with them. A device “doesn’t say how to change eating habits or how to change exercise habits. It’s not personalized enough,” says Vibhanshu Abhishek, assistant professor of information systems at Carnegie Mellon University in Pittsburgh. “Devices need to get more personalized and give specific recommendations based on current behavior. Just walking 10,000 steps isn’t enough. It has to give goals and specific instructions to individuals—if I ate a big lunch, then here’s how much more I need to work out today.”

Devices are most useful “when the intervention is tailored to the patient,” agrees Dr. Lobelo. For each patient, “it needs to be tweaked. It’s a never-ending series of projects and applications, not one universal solution.”

Another aspect of prevention involves keeping patients with diseases or chronic conditions from becoming sicker. Most patients with chronic conditions are at home, not hospitalized, so no doctor or health professional regularly observes whether they follow the recommendations they’ve been given, Dr. Abhishek says. “Mobile apps provide an opportunity to collect this information in a cost-effective manner on a continuous basis. Using algorithms or health-identification tools, a doctor can figure out whether a treatment is working. It hasn’t been possible to do this in a generalized way because data collection has been so expensive. In the future we can say treatment A works for this type of patient, and treatment B works for this other type of patient, based on the data from mobile devices.”

Measuring the pulseA number of online platforms offer information and support for self-care by patients with different diseases. The University of Pittsburgh developed iMHere, a mobile health platform to empower chronic-disease patients for self-care under a clinician’s guidance. For example, iMHere aims to help spina bifida patients avoid secondary complications, such as skin problems and urinary tract infections, through remote monitoring, with clinicians sending patients customized treatment plans. Other programs aim to help cancer patients manage their care, such as managing the accumulation of lymph fluid after breast cancer treatment.

Health systems are going to be more proactive in working with people to make healthy choices,” Dr. Lobelo says. “Including patients—that’s the center of the whole thing. We want to encourage people to self-measure and use the data to improve their health. An active dialog needs to happen.”

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe, now working as a freelance writer and editor with WSJ. Custom Studios in EMEA. For more from Catherine Bolgar, along with other industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of iStock

Digital Doctoring

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

By Catherine Bolgar

The rapid increase in personal devices and smartphones with sensors and applications that can track various measures of users’ health offers new avenues for preventive care.

Particularly useful are bluetooth-enabled off-the-shelf devices such as weight scales, non-invasive blood pressure monitors or pulse oximeters, as well as regulated medical devices such as on-body devices like insulin pumps, on-body sensors that monitor such things as electrocardiography, temperature or glucose, and even pill bottles that track medications.

Researchers in Japan designed a smartphone app to identify early signs of dementia in the elderly. Argentina, Guatemala and Peru have mobile health (mHealth) initiatives targeting noncommunicable diseases such as cardiovascular disease. In Malawi, an mHealth project for new mothers has helped reduce unnecessary trips to the doctor.

Some mHealth projects give medical professionals less-expensive tools that enable them to reach remote patients in developing countries. The Portable Eye Examination Kit (PEEK) is being tested in Kenya to provide comprehensive ophthalmic testing via a smartphone.

“This is a very exciting, fast-moving field,” says Felipe Lobelo, associate professor of global health at Emory University in Atlanta. “There are many opportunities to integrate mHealth into preventive care for patients. When we say preventive care, it’s not just primary health, like warding off diabetes years from now, but also managing disease for people who have risk factors,” such as getting a person to make lifestyle changes after a heart attack to prevent a subsequent episode.

AliveCor  is one of the first FDA-cleared devices to be cleared by the U.S. Food and Drug Administration (FDA) for smartphones which provides for the monitoring and display of the patient electrocardiography, heart rate and wireless transmission of data to a healthcare provider helping patients to more effectively manage their condition and to be more proactive in their care.

Most wearable devices and smartphone apps are targeted at consumers for general wellness, but aren’t regulated by the FDA or by similar agencies in other countries because they aren’t intended to be used to diagnose diseases.

We see huge health potential and revenue potential if these devices become part of health care,” Dr. Lobelo says. “But for that to happen, serious steps need to be taken for standards for clinical use,” such as ensuring accuracy, security and privacy of the data.

The other hiccup is on the patient/consumer side. “The problem is, people download apps on their phones and stop using them after a week,” says Vibhanshu Abhishek, assistant professor of information systems at Carnegie Mellon University in Pittsburgh. “Engagement is a big issue.”

Dr. Abhishek and some colleagues studied a healthy eating project to see whether mHealth actually improved outcomes. They found that people did a better job of recording what they ate, but that feedback from a dietician significantly improved results, whereas peer support didn’t keep people involved nor did it affect eating habits.

Dr. Abhishek sees five levels of engagement with mHealth devices and apps:

  1. providing general information about the right thing to do.
  2. tracking information about consumers over time and giving a summary, such as steps taken, which are measured against a benchmark.
  3. getting personalized recommendations for improvements based on the tracked data.
  4. predicting life-threatening conditions based on data from the devices, such as high blood pressure or low blood sugar.
  5. giving tracked data to the health-care provider, who can see whether a treatment is working or can give patients advice via an app.

“We’re just now getting to level three,” Dr. Abhishek says.

Digital technology isn’t limited to mHealth. The U.K.’s National Health Service (NHS), a leader in digitization, aims to be largely paperless by 2020, with records connected across services from primary to secondary to social care. Despite a mandate since 2009, not all U.S. health-care providers have switched to electronic health records. Canada remains dependent on paper for many patient records.

Computers excel at data-driven tasks like calls for immunizations and refilling patients’ prescriptions for medications, says Simon de Lusignan, professor of primary care and clinical informatics at the University of Surrey in Guildford, U.K. Data also provides a surveillance system for predicting the winter flu season.

Eventually, we will have long-term data that will provide insight about whether a patient is stable or changing. Computers can assemble data that may be scattered around a clinical record to produce a risk score, which “may help us in how to intervene and manage people,” he adds.

A holistic view of the patient would be progress, says Phil Koczan, chief clinical information officer at UCL Partners, a health science partnership linking higher education and NHS members in the U.K. A diabetes patient might see a specialist for diabetes, a general practitioner for other treatments, and an eye specialist.

The big potential is for joining records up and giving patients sight and control of their records,” Dr. Koczan says. “Technology will link with mobile phones that will record personal health data that’s then made available to clinicians.”

That’s No. 5 on Dr. Abhishek’s levels of engagement, “giving patients the right information so they can act upon it and take the right decisions, and give information in some form to the health-care providers so they can improve the care.”

Dr. Abhishek concludes, “We’re in the very early days of mHealth. Eventually I think it’s going to be a very big component of how we can live healthier lives.”

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe, now working as a freelance writer and editor with WSJ. Custom Studios in EMEA. For more from Catherine Bolgar, along with other industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of iStock



Page 1 of 1012345...10...Last »