The next industrial revolution: do more with less

By Catherine

Written by Catherine Bolgar*

Stylish robot assemble

Since the Industrial Revolution in the 18th and 19th centuries, we keep producing more, while working less. The digital age speeded up productivity even more. The next industrial revolution is likely to focus not just on doing more faster but also with fewer resources.

We have the same potential for a 10- to 15-fold increase in productivity that we saw in the Industrial Revolution,” says Stefan Heck, consulting professor at Stanford University and co-author of the book, “Resource Revolution: How to Capture the Biggest Business Opportunity in a Century.” In the Industrial Revolution, “it was labor productivity that improved. Now we can do that with resources. We have been improving in the past, but modestly—less than 1% for water to 1.5% for gas.”

Global population grew fourfold during the 20th century, while the volume of material extracted or harvested rose eightfold, according to “Sustainable Materials Management: Making Better Use of Resources,” a book by the Organization for Economic Cooperation and Development.

The approximately 2.5 billion people in emerging markets poised to join the middle class by 2030 are likely to increase consumption of everything from food to water to energy.

Doomsday predictions that we’ll run out of oil or other resources aren’t likely because technology keeps presenting new ways to access what we need. However, “we’ve already recovered the best resources,” Dr. Heck says. Those we haven’t yet tapped are “more expensive to recover—they’re deeper, farther offshore and lower quality.”

To meet global demand forecasts for 2030, we would need to boost gross domestic product per metric ton of materials by 1.3% a year, food yields per hectare by 1.5%, GDP per British thermal unit of energy 3.2% and GDP per cubic meter of water by 3.7%, he says.

Sir John Beddington, chief scientific adviser to the British government, made a similar forecast, saying that by 2030, the world will need 50% more food and energy and 30% more water to supply a population that’s growing by six million people per month.

Such substantial productivity increases can be achieved by “combining information technology, nanoscale materials science and biology with industrial technology,” Dr. Heck says. “The benefit is, if you have that level of productivity shift, there’s billions of wealth to be created.”

Dr. Heck lists five levers to produce the resource revolution:

  1. Reduce waste.
  2. Substitute with something more efficient. For example, auto makers are increasingly using lightweight composite materials or aluminum rather than steel to reduce fuel consumption. A switch from a gasoline-powered vehicle—only 30% efficient—to an electric vehicle—96% to 98% efficient—requires less energy. Plant-derived proteins can substitute for resource-intensive animal proteins, at least some of the time. “There are multiple wins—environmental benefits, cost benefits, consumer benefits, health benefits,” Dr. Heck says.
  3. Optimize, using sensors or controls to improve efficiency. Dr. Heck describes a steel plant that upgraded with sensors and robots. Workers who previously had to wear protective gear now manipulate the steel remotely from the safety of a control room. The plant cut energy use 20%-25% and increased output. Another example is using GPS and software to optimize delivery routes, saving time and fuel.
  4. Virtualize, turning physical goods into services or moving online. The number of miles driven, driver’s licenses issued and fuel used in the U.S. peaked in 2006, before the recession. That’s in part because people have shifted to online shopping and banking—“when you multiply fewer trips by the total population, you get significant savings,” Dr. Heck says. At the same time, banks, for example, save by not having to operate as many branches.
  5. Recycle, reuse and refurbish. A number of companies are taking old products, removing the parts that are still good to reprocess them and put into new products. “That changes the equation dramatically,” Dr. Heck says. “We had an economy where most products were used once and ended in a landfill.”

Mobile phones used to be used once and thrown away, but a number of services have sprung up to take back your old phone when you buy a new one, and to sell still-working phones in developing countries or to disassemble broken phones to recuperate materials. “There’s 100 times more gold per weight in phones than in a gold mine in Africa,” Dr. Heck says.

Lead-acid batteries are collected for reprocessing the lead, which constitutes the lion’s share of the cost of a new battery. By creating a closed loop for the lead, “there’s both an economic and a huge environmental benefit. If you look at what they’re doing, it’s a lead rental business,” he says.

Companies that profit from product sales need new business models to give them incentives to make their products more durable. “If cars are shared, then you’re making money on the use of the cars, not on the sales,” he says.

As waste is wrung from the industrial system, “things become cheaper, and we can have the same level of service or quality of life with fewer resources,” Dr. Heck says. “We would spend less, and from an environmental point of view have an economy that’s still delivering growing GDP but with far less energy.”

*For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.

Think you have what it takes to shape the future?

By Alyssa

If you have been following this blog for the past 6 years, or if you’ve just found us – you will know that we at Dassault Systemes are driven by a goal to help people imagine sustainable innovations capable of harmonizing product (the economy), nature (the environment) and life (the people). We believe that “if we ask the right questions, we can change the world.”  We are passionate about helping leaders in a range of industries around the world create innovative ways to advance and optimize our path to the future.

To support our mission, we are excited to announce that we have formed a new community on LinkedIn called Future Realities.  You won’t hear a lot directly from us there. Instead, we created this as a space for anyone interested in kicking around ideas around future trends and technology to come together.  You’ll find posts now from thought leaders from The Economist and the Wall Street Journal, and every day community members are raising their own questions to learn what others out there think.

We would love for you to join us! Share your own questions, or jump into one of the compelling discussion topics already raising interesting points, such as:

Join the Future Realities Discussion

Improving the Reliability of Consumer Electronics Products Through Realistic Simulation

By Harish

Realistic simulation for Electronic products

Early product failures and product recalls are very costly. They result in loss of revenue, litigation, and brand devaluation among others. Hardware recalls are often costlier than software recalls as software patches can be easily downloaded and installed once flaws come to light. But recalls and early product failures tend to happen over and over again. Why? Because engineering teams are constantly under the gun to improve product performance, reduce form factors, and reduce time to market, all while cutting costs. In order to mitigate risk engineers need to develop a deeper understanding of the product behavior under real operating conditions and quickly evaluate design trade-offs based on overall system behavior.

Physical tests provide an excellent means to understand product behavior. However, physical testing is expensive and time consuming. Simulation provides a cheaper and faster alternative to physical tests. It is critical to strike the right balance between physical tests and simulation during product development. In order to get the maximum bang for your buck, simulations should be deployed starting early in the design cycle when physical prototypes are not available and the design is not fully developed. The earlier you find flaws, the earlier you can fix them. Since the cost of fixing flaws grows exponentially through the design cycle (figure below), identifying and fixing design flaws early in the design cycle is super critical.

Relative Cost of fixing errors in embedded Systems

Relative cost of fixing errors in embedded systems

Not all simulation tools are created equal. You don’t need any answer. You need the right answer. For that, you need simulation tools that most closely depict reality. And you need answers fast. Hence you need product testing and validation tools with industry leading physics and solver technology to obtain accurate solutions faster in order to help you improve product design, ensure product reliability and reduce time to market. Accurate depiction of material behavior and physics of failure are essential to obtaining realistic results. Such capabilities are critical in predicting the behavior of materials such as glass, adhesives, and polymers that have high propensity for damage.

Consumer electronic products, especially mobile and portable devices such as smartphones, tablets and laptops, are subjected to a variety of operating conditions. The devices need to be designed to protect them from damage. Engineers need to ensure that “portable” doesn’t mean “breakable.”

Tablet drop

The challenge is to design a light-weight product that can withstand not just the loading cycles associated with regular usage, but also abusive loading scenarios that are encountered less frequently (According to surveys and insurance claim statistics, drop and water damage constitute the two most frequent causes of damage for mobile devices.). Simulation should be employed at the ideation, product development, and failure analysis stages in order to improve product quality and reduce time to market. Refer to this  case study to learn how a leading manufacturer of consumer electronics used simulation to improve the keystroke feel and to enhance frame rigidity while reducing weight .

Tablet drop simulation

While drop during daily usage is a concern for mobile devices, transportation drops are the main concern for office equipment. The engineers are faced with the challenge of identifying the structural members that are most susceptible to damage and to improve their damage resistance while reducing the overall weight of the structure. Refer to the ebook below to know how a leading manufacturer of office equipment designed a low cost printer that can withstand a series of transportation drop tests.

The examples above provide a snapshot of applications leveraging SIMULIA Abaqus technology   to successfully improve product durability while satisfying other constraints such as weight and cost.

More example related to  how engineering teams are using virtual testing to predict stresses, optimize design performance and reduce time to market can be read in  this ebook .



Page 1 of 4612345...102030...Last »
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.