Green design brings nature into the urban jungle

By Catherine

Written by Catherine Bolgar*

Dense RainforestA jungle is green and leafy, and the urban jungle should be the same, right?

Since 2010, more people live in cities than in the countryside for the first time in human history. The trend is expected to speed up in developing countries, with more than 60% of the world’s population living in urban areas by mid-century, the United Nations predicts.

Bringing nature into cities can make urban environments more sustainable as well as more aesthetic, more comfortable and healthier.

“Many architects today already claim to do green design, some to a greater level of authenticity than others. I contend that in the next five to 10 years just about every architect and student will do green design as second nature in their work,” says Ken Yeang, a principal with T.R. Hamzah and Yeang, a Malaysian architectural firm focusing on ecoarchitecture, and of Ken Yeang Design International in the U.K. “Green design is just one of the criteria for good design.”

Architects often see green design as a matter of certification, such as the U.S. Green Building Council’s LEED, or Leadership in Energy and Environmental Design, or the Green Building Initiative’s Green Globes, or the Building Research Establishment’s Environmental Assessment Method (BREEAM) in the U.K. Beyond aiming for certification, “I take the holistic view of an ecologist,” he says. “I see green design as bio-integrating everything that we as humans make and do on the planet with the natural environment in a benign and seamless way.”

That requires integrating flora and fauna, water, humans and the built environment in a holistic way. “We start design by looking at the ecology of the land and see how we can bring more nature back to a location and bio-integrate nature with the physical built environment,” Mr. Yeang says.

The Solaris

The Solaris, designed by Mr. Yeang and part of the Fusionopolis research and development park in Singapore, has more than 8,000 square meters (9,567 square yards) of landscaping—13% more than the original site—thanks to roof gardens, planted terraces and a 1.5-kilometer (0.9-mile) ramp of continuous vegetation that spirals up the 15-story building’s facade, helping to insulate as well as offering a range of habitats that enhances the locality’s biodiversity.

I design buildings as ‘living systems’ and as ‘constructed ecosystems,’” Mr. Yeang says. “It’s not just about green walls. I bring back the native fauna that are not hazardous to humans and match these with the native flora selected to attract the fauna, now set as ‘biodiversity targets’ in a matrix. With this, I create the local landscape conditions to enable flora and fauna to survive over the four seasons of the year.”

The idea is spreading. A primary school and gymnasium in the Paris suburb of Boulogne-Billancourt, now under construction, was designed by architects Chartier-Dalix to be covered with a living shell and house local flora and fauna.

BLG 18 classrooms school and sporthall

Argentine architect Emilio Ambasz built a multi-use government office building in Fukuoka, Japan, with 14 one-story terraces that make the one-million-square-foot building look like a green hill rising from the park in front of it. Mr. Ambasz also renovated the headquarters of ENI in Rome with curtains of vegetation.

Basel, Switzerland, has required since 2002 that flat roofs be covered with vegetation, in part to save energy and in part to protect biodiversity. While the peregrine falcon, one of the first species on the U.S. endangered species list in 1974, reboundedin part through urban nesting programs to nearly 100,000 birds world-wide today, less-glamorous endangered species, from spiders to beetles, also benefit fromthe increase in habitat. In the U.K., the Bat Conservation Trust has published a landscape and urban design guide for bats and biodiversity.

A green exterior is nice, but what goes inside—the design and materials—are important, too. “The building and products sector are seeing that environmental issues are moving up the agenda,” says Martin Charter, professor of innovation and sustainability at the Centre for Sustainable Design at the University for the Creative Arts in Farnham, U.K. “Construction, buildings and building products are associated with high carbon dioxide emissions on a macro level and big end-of-life waste issues. The sector does have a big-life cycle impact, not just in extractive phase but at other stages of life cycle as well.”

Concrete produces as much as a tenth of industry-generated greenhouse gas emissions. Researchers studying the molecular structure of cement found that changing the recipe to 1.5 parts calcium for each part of silica wouldcut cement’s carbon emissions up to 60% while making the resulting material stronger.

Simple design considerations can make a building greener. The shape and the orientation can affect heating and cooling needs. Natural ventilation with mixed mode systems can alleviate the need for air conditioning even in tropical climates. Mr. Yeang designed the Menara Mesiniaga office building in Selangor, Malaysia, so even elevator lobbies, restrooms and stairwells in the 15-story building get natural ventilation and natural daylight.

Green design includes water management in rainfall harvesting and storing water, so potable water doesn’t have to be used to irrigate the vegetation. Design must close the water cycle within the site, combining water management, water reuse and recycling with sustainable drainage and constructed wetlands for blackwater treatment, he says.

In nature, the only energy is from the sun. If we want to imitate nature, we should use only the sun,” Mr. Yeang says. “In nature, everything is recycled. Waste from one organism becomes the food for another. In human society, we have a throughput system where we use things and throw them away, but in fact, there is no ‘away’ in the biosphere—it just goes somewhere and pollutes the environment. If we imitate nature, we should have a closed system. As a design strategy, we need to study the attributes and properties of ecosystems as the basis for designing our built environment. When this becomes mainstream, there will be a stasis of nature with our built environment.”

*For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.

Storage is the key to next generation energy

By Catherine

Written by Catherine Bolgar*

Batteries

The linchpin in making sustainable energy mainstream is power storage.

Renewable energy sources can’t overtake carbon-based energy without good storage of energy for when the sun isn’t shining or the wind isn’t blowing. Electric vehicles won’t outsell gas vehicles until they have more autonomy and faster charging.

Batteries have become longer-lived, lighter, cheaper and safer, thanks largely to the boom in mobile electronics; new materials, nanotechnology and new understanding of electrochemistry are leading to more advances.

Batteries are an old technology, but people are really focusing on research and development now. I have no doubt that 10 years from now we will see some amazing batteries,” says Charles Barnhart, assistant professor of Environmental Sciences at Western Washington University.

Batteries remain a black box on a molecular scale. “There’s a tremendous effort internationally to understand in detail the processes during charging and discharging lithium-ion batteries,” says Olaf Wollersheim, project manager of the Competence E program at the Karlsruhe Institute of Technology (KIT), in Eggenstein-Leopoldshafen, Germany. “It’s really complex, because they are multimaterial systems.”

Lithium-ion, or li-ion, batteries have been adopted by the car industry because they are 98% to 99% efficient. However, they can burn “if they’re not treated with respect,” he says, adding that the auto industry has learned to use them safely.

Dr. Wollersheim recently inaugurated Germany’s largest solar power storage park at KIT, consisting of 102 smaller systems of 10 kilowatts each, with different orientations, module brands and inverter brands. The project aims to find the best combination for storage.

Energy plantOne avenue for improvement is software to control batteries. “A battery by itself is a stupid thing,” Dr. Wollersheim says. “It stores energy and gives it back. To do that optimally, you need an energy manager—a masterpiece of software. It has to take into account all the specifics of the electrochemistry of the cells. KIT has software with 10,000 lines of code just to control the storage system.”

Such controls can increase the battery’s lifetime and the return on investment. If the battery charges while the sun is still rising, it might be full and waiting for discharge at midday. That isn’t good for making the battery last. A control system might “charge the battery a little bit slower, in order to have shorter times of full charge,” he says.

Research also is looking at how stored energy interacts with the grid. Dr. Barnhart compared five kinds of batteries—lead-acid, li-ion, sodium-sulfur, vanadium-redox and zinc-bromine—to calculate how much energy it takes to store the electricity, including building the devices, and the amount of carbon they emit during manufacture and operation. He paired the different battery types with wind-generated and photovoltaic electricity, and matched them up against the power grid average to find the optimum combination.

Lead-acid batteries have a low cradle-to-grave energy cost, because lead is abundant and the technology is well established. However, they last only 200 to 400 charging/discharging cycles.

By contrast, Dr. Barnhart said, li-ion batteries have higher cradle-to-grave costs but last 3,000 to 5,000 cycles, making them the winner among batteries when paired with both solar and wind sources.

The cheapest, cleanest way to store power, Dr. Barnhart notes, isn’t a battery but pumped hydro—pumping water up a hill while the sun is shining or the wind is blowing, and then releasing the water to turn turbines and generate electricity when the renewable source isn’t working. A similar technology pumps compressed air into an underground cavern to spin a turbine later.hydro storage

Pumped hydro is 99% of the storage on the grid today” in the U.S., says Dr. Barnhart. “These are simple technologies that last a long time and aren’t subject to complex chemistries.”

However, geography limits the easy options for pumped hydro. In Germany, “there is strong public opposition to converting nice valleys into storage systems,” Dr. Wollersheim says.

The demand for electricity rose to 1,626 million tonnes of oil equivalent (Mtoe) in 2012 from 400 Mtoe in 1973, according to the International Energy Agency. The IEA forecasts electricity demand to grow by more than two-thirds between 2011 and 2035, and for renewables to account for 31% of power generation by 2035, up from 20% in 2011.

A big shift toward electric vehicles would add a large load to the electricity network, says Suleiman Sharkh, professor of  power electronics machines and drives at the University of Southampton in the U.K. “We and others say this would also be an opportunity to reinforce the grid, because those batteries on the electric vehicles are available when the vehicles aren’t being driven around. If we connect them to the grid, they could store energy from wind power or solar panels.”

Such a system would require the system to know in advance the driving needs for the vehicle, to make sure it’s charged enough, as well as information about electricity demand on the grid, he says. Costs would have to be calculated—perhaps car owners could charge for free or be paid for allowing their batteries to be used for grid storage, and for the extra wear and tear on the batteries.

With so much territory uncharted, the first applications of vehicles for power storage are likely to be municipal fleets, especially in China, where pollution concerns are accelerating a shift toward electric-powered transport, Dr. Sharkh says.

“It’s something we think is going to be a good option in the future,” he says.

*For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.

More Power to Electric Vehicles

By Catherine

Written by Catherine Bolgar*

In some ways, the car of the future is a blast from the past.

The electric car was invented more than 100 years ago, but was overtaken in the 1930s by petrol-powered autos.

A brief history of electric vehicles

Electric vehicles (EVs) are getting a second wind as a more sustainable alternative to cars. EVs produce no tailpipe emissions—an important quality because global carbon dioxide emissions from passenger cars and freight transport are forecast to double by 2050 according to the International Transport Forum, with cars accounting for the lion’s share.

While the electricity powering EVs may be generated by fossil fuels, it still pollutes about 40% less than regular cars. And that could be cut by shifting toward renewable energy for the electricity EVs use to charge up.

About 180,000 EVs are on the road today, a drop in the ocean compared with the global fleet of over a billion petrol -powered cars, a number expected to grow to three billion by 2050. The Electric Vehicles Initiative, a forum of 16 countries, hopes to get 20 million EVs on the road by 2020, which would represent 2% of total passenger cars.

Electric car in charging

In other words, we’re still a long way from the future.

Why are EVs such a hard sell? The advantage of petrol-powered cars is unlimited range, something that has become inseparable from the essence of “automobile”—this thing that lets you go anywhere, at any time. EV ranges run from 70 to 100 miles (112 to 160 kilometers) on a single charge. Statistics show that 95% of vehicle trips in the U.S. are less than 30 miles and that only 1% of trips are more than 70 miles, so current EV range is plenty for most trips.

People cite worries about having to look for a charging station, or that charging will take longer than topping off the gas tank does. However , EVs have advantages.

YouTube Preview Image

Drivers are accustomed to a routine of filling their gas tanks weekly, even though it’s smelly and, in bad weather, unpleasant. “One of the conveniences of electric vehicles is you plug it in overnight and don’t have to go to the charging station,” says Don Anair, research director of the clean vehicles program of the Union of Concerned Scientists.

YouTube Preview Image

A range of innovations aims to address some of the technical problems.

  • Better batteries. Consumer electronics such as smartphones have helped drive advances in battery technology, particularly in improving battery life while reducing size. Auto-makers are shifting to lithium-ion batteries, from nickel-metal hydride batteries. However, researchers continue to chase new technologies, such as lithium-air, silicon alloy anodes, lithium metal graphene-anode and other battery combinations. Already, the cost of batteries for plug-in EVs has dropped by half in the past four years, and the size and weight have shrunk 60%.
  • Hydrogen fuel cells. A technology at an early stage of commercialization is EVs powered by hydrogen fuel cells. “It’s a good option for consumers looking for an EV, but who don’t have a place to plug in to charge,” Mr. Anair says.
  • Old mixed with new. The hybrid uses both electricity and petrol fuel, with a growing range of choice. At the mostly-petrol-with-a-little-electricity end of the spectrum, conventional hybrids switch to electric in high-consumption situations like traffic jams, with batteries charged by regenerative braking and the gasoline engine. Plug-in hybrids run on the battery and switch to the internal combustion engine when the battery is out of juice. At the mostly-electric end of the spectrum, an EV with a range extender keeps powering the wheels from the battery while a small gas motor charges the battery enough to run the car farther. A range extender allows for a lighter-weight battery, which helps improve efficiency.

The first battery-powered vehicles with range extenders are on the market. BMW’s electric vehicle, the i3, now has an optional range extender that adds up to 75 miles of driving on a charge. General Motors has added a range extender to the Chevrolet Volt and Opel Ampera.

In the future, consumers will have more choices of low-carbon vehicles to drive,” Mr. Anair says.

  • Lighter vehicles. Reducing weight, whether for EVs or conventional vehicles, improves efficiency. The internal combustion engine burns fuel to make power, but only 25% to 30% of the energy in a gallon of gasoline turns the car’s wheels, while the rest is lost as heat, explains Lawrence Burns, professor of engineering practice at the University of Michigan. If the driver weighs 150 pounds (68 kilograms) and the car weighs 3,000 pounds, then only about 1% of the energy is being used to move the driver. “We have to get vehicles more in line with our body weight,” he says.

Lighter materials such as aluminum, carbon fiber, magnesium, composites and steel alloys are gaining favor already, as a way to meet fuel efficiency requirements. Ford’s new F-150 pickup truck , for example, now has an aluminum body, reducing the weight by 700 pounds.

F-150

With nanotechnology, we are able to create new types of materials with new products,” Dr. Burns says.

One reason why consumers shy from lightweight or small vehicles is how they withstand crashes. In the future, connected and driverless vehicles will improve traffic flow and reduce accidents. “We can have cars that don’t crash, so we can get mass out of the car,” Dr. Burns explains.

Connectivity and big data could help in another way: by improving systems for people to share vehicles and to deliver goods more efficiently. A global shift away from cars could save $100 trillion, cut 40% of urban passenger transport emissions and avoid 1.4 million early deaths by 2050, according to a new study.

We not only need to improve the vehicles or fuels, but also to think of the whole transport system and how you can improve services in passenger transport and logistics, making use of information and communications technology,” says Nils-Olof Nylund, research professor at VTT Technical Research Center of Finland, which has launched a program to make Finland a model country for sustainable transport by 2020.

In looking at mobility as a service, the goal is to reduce the need for cars and instead increase public transport, walking and biking, he says. Key to public transport are frequency and communication—people don’t like to wait for public transport, especially in bad weather. Knowing exactly when the bus will arrive, thanks to a smartphone app, can eliminate that barrier.

In addition, buses, which run along fixed routes on fixed schedules, are ideal for electrification—charging stations can be located on the routes, Dr. Nylund says.

What I see coming is not one thing but a combination of connected, shared, driverless, tailored vehicles, combined with business models focused on selling miles, trips and experiences, not just cars, gasoline and insurance,” Dr. Burns says. “Technologically, I don’t think there’s anything that stops us from having a dramatically more sustainable transportation system than in the past.”

 

*For more from Catherine, contributors from the Economist Intelligence Unit along with industry experts, join The Future Realities discussion.



Page 1 of 2312345...1020...Last »
3ds.com

Beyond PLM (Product Lifecycle Management), Dassault Systèmes, the 3D Experience Company, provides business and people with virtual universes to imagine sustainable innovations. 3DSWYM, 3D VIA, CATIA, DELMIA, ENOVIA, EXALEAD, NETVIBES, SIMULIA and SOLIDWORKS are registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.