How can technology protect natural resources?

By Alyssa
Share on FacebookTweet about this on TwitterPin on PinterestShare on LinkedInShare on Google+

In recent years, due to growth in places like China and India and increasing urbanization, demand for natural resources has dramatically increased. Natural resources companies are under pressure to provide the materials to feed that growing appetite – while at the same time protecting the environment and local communities where the resources are found. Because these resources can take millions of years to replace, it’s critical to be very aware of where the resources are so that we can understand the available inventory and the costs of extracting them.

Marni millions of years-001
 

In a new video produced by Wall Street Journal Custom Studios for 3DS’s LinkedIn community, Future Realities, Dassault Systèmes Vice President of Natural Resources, Marni Rabasso, explores how technology can address these concerns. Click here to watch the 3-minute video and then jump over to LinkedIn to comment!

Harvesting data to feed the world

By Catherine
Share on FacebookTweet about this on TwitterPin on PinterestShare on LinkedInShare on Google+

Written by Catherine Bolgar


iStock_000018520587_Small
 

In the 1950s and ‘60s, the green revolution sharply increased crop yields, thanks to fertilizers, pesticides and new seed varieties. But with a billion more mouths to feed by 2025, how will we reap more food without harming the environment? Big data might help.

The global agriculture biotechnology market is forecast to grow to $46.8 billion by 2019, with the bulk focused on transgenic seeds and synthetic biology products such as DNA synthesis and biofuels.

“Technology could improve yields and reduce waste,” says David Lobell, associate professor of earth system science at Stanford University in California. “One of the biggest impacts will be to bring down input costs. That will help not so much in terms of yields but in the price of food and the environmental impact—bringing down water use and fertilizer use.”

As you have better knowledge of what you need, you can reduce the margin of error.”

Genetics: Just as big data has helped scientists tease apart genetic traits in humans, so it is doing for agriculture.

Researchers are mapping the genomes of fungi, parasites, pathogens and plants, which can speed up breeding for traits such as salt tolerance. (About three hectares per minute become too salty for conventional farming.)

“The main idea of genomic selection is that effects of abiotic stresses like heat are controlled by lots of different genes,” Dr. Lobell says. “Those types of things can be better identified by more and more data for lots of different varieties. You can start to statistically pull out smaller effects with larger data sets.”

iStock_000047221908_SmallBig data is analyzing plant populations to understand better why some plants thrive in certain environments and others don’t. The Compadre database is a collection of more than 1,000 plant population models across 600 species, while the similar Comadre database is for animals. The data are difficult to collect, with researchers visiting the sites several times, notes Yvonne Buckley, professor and head of zoology at the University of Dublin.

By looking, for example, at how big and efficient leaves are, scientists hope to be able to predict whether a species will become extinct. “It’s important for food security, which populations might be vulnerable to disappearing,” she says.

Precision agriculture: Big data can also help farmers decide which seeds to plant, whether to apply fertilizers or whether to irrigate. With sensors, they can measure conditions such as soil moisture, while drones can provide a close-up view of far-flung fields in real time. Moreover, technology required to collect this data keeps getting cheaper.

“By monitoring what’s really happening, you can give people information and boost their food security,” says John Corbett, founder and chief executive of aWhere Inc., a Broomfield, Colorado, agriculture intelligence company.

aWhere analyzes temperature, rainfall, humidity (which can affect fungus and mold), solar radiation, wind and agronomic modeling. Its high-tech methods aren’t restricted to developed countries.

Farmer or agronomist in soy bean field with tabletThe cell phone is by far the most influential technology for dispersing information,” Dr. Corbett says. “The penetration of cell phones in sub-Saharan Africa is phenomenal. Any farmer can be connected to the world’s data bank. Without changing anything like seed or fertilizer, they can improve yields 30% just by using better information.”

aWhere delivers information to farmers in sub-Saharan Africa. In Kenya, for example, aWhere supplies weather data to iShamba, a for-profit agricultural advisory company that also produces a hit reality TV show, “Shamba Shape Up” (shamba is Swahili for “farm”) to answer subscribers’ questions and update commodity prices by SMS.

Cell phones can also collect data—aWhere surveys farmers by SMS. As the Internet of Things moves to the farm, tractors and other machinery will be able to transmit data from the field.

“If you can get on-the-ground information, and if you process it and push it back to the person, there’s an enormous amount of optimization and efficiency that will come to the agriculture value chain. Farmers can plan what will sell. They can form cooperatives, which make selling more efficient,” Dr. Corbett says. “If you do it across the value chain, the whole chain strengthens.”

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion.

Photos courtesy of iStock

Sewers paved with gold

By Catherine
Share on FacebookTweet about this on TwitterPin on PinterestShare on LinkedInShare on Google+

Written by Catherine Bolgar

The future gold rush might be to a sewer near you. Municipal sewage contains many metals, including gold, silver and platinum. Concentrations vary by metal, but municipal sewage tends to contain about one part per million of gold. This “isn’t a lot, but for gold it’s significant,” says Kathleen Smith, research geologist at the U.S. Geological Survey, and an expert on metals in biosolids.

Biosolids (treated sewage sludge) are more commonly understood as fertilizer. “It’s high in phosphorus and slow-release nitrogen,” Dr. Smith says. Around half the roughly seven million dry tonnes of biosolids collected at U.S. wastewater treatment plants is recycled as fertilizer, including in public lands and forests.

But while copper and zinc, for example, are essential for plants and animals, these metals may become toxic in high concentrations, hence the need to monitor and regulate the chemical and metal content in waste.

It’s not just the regulated metals such as copper and zinc that now attract attention. “The presence of some valuable metals—such as gold, silver, platinum, and palladium—is [also] of interest, due to their concentration levels,” Dr. Smith says.

In the mining industry, sought-after metals are dispersed. “You have to spend a lot of money and move a lot of rock to get at the metals,” Dr. Smith explains. Recovering metals from sludge, however, is easier. It also complements traditional mining and can be undertaken in any market.

From a sustainability point of view, we’re…trying to find a way to extract metals from [waste streams] that contain large amounts of metals, versus just throwing them in a landfill and dealing with the effects of having the metals dispersed in the environment,” Dr. Smith says.

There’s also money to be made. Arizona State University researchers calculate that a million-strong community produces $13 million worth of metals in biosolids annually. The most lucrative elements—silver, copper, gold, phosphorus, iron, palladium, manganese, zinc, iridium, aluminum, cadmium, titanium, gallium and chromium—have an estimated combined value of $280 per ton ($308 per tonne) of sewage.

A 1978 analysis of incinerated sludge in Palo Alto, California found 30 parts per million of gold and 660 parts per million of silver in the city’s annual ash pile, worth some $2.5 million; since then the gold price alone has risen six-fold.

Knowing the total concentrations of metals in the biosolids is just the first step,” Dr. Smith notes.  The challenge is to release and recover the metals in the correct form to interest the market. “It’s not as easy as multiplying the concentration of the metals by their market value.”

Scientists at the Swiss Federal Institute of Technology Zurich, for example, are working on a thermal-chemical process to decontaminate sludge, remove harmful heavy metals, and retain the phosphorus as fertilizer.

Meanwhile, JBR Recovery Ltd., in West Bromwich, U.K., has developed a commercially-viable method to recover silver and other precious metals from industrial sludge. Simon Meddings, JBR’s managing director, explains the process. First, a rotary kiln uses combustible silver-bearing waste to dry out most of the moisture. A high-carbon ash is produced—increasing the volume of metals to 10% to 15% from around 0.2%—and placed into a lead-based blast furnace. The lead collects the precious metals, and slag is dispersed through a tap hole at the front of the furnace. The alloy of lead and precious metals then goes into a cupellation furnace, which oxidizes the lead, allowing it to be poured off the top. The remaining bath of molten metal—around 98% pure silver with gold and other platinum group metals present—is cast into bars. These go into moebius cells where an electrical current refines the silver to 99.9%, and collects and refines the gold and platinum separately.

Sludge suppliers are paid according to how much precious metal is extracted and sold, less treatment and refining charges. The photographic industry and chemical production plants are major customers (photographs and x-rays in particular having high metals content).

Nonetheless, many large companies overlook their waste streams, and simply contract waste management companies to dispose of their sludge.

You’d be surprised how much ends up in landfill,” Mr. Meddings says. “People are not aware of the value in it.” They might take more interest “if they know they can get a financial rebate.”

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion.

Photos courtesy of iStock



Page 1 of 2412345...1020...Last »