The Need To Transform The Way We Develop Embedded Mechatronic Systems

By Neno
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

The challenge of developing embedded mechatronic systems for smart products has never been greater.  During the initial 60% of the development process, no physical prototypes exist. This means that fewer than 10% of systems engineers have the opportunity to validate systems and their sub-systems in a complete product.  This makes it impossible to validate and optimize a system’s behavior or to fully understand its interaction with other systems in its target environment and across all possible product configurations.

In this era of smart products, where products are often differentiated in the marketplace by their innovative capabilities that are implemented within the product. Many of these capabilities are delivered through embedded systems, the source of up to 80% of today’s smart product innovations.  Such systems can account for more than 40% of a new products development costs and are defined by many thousands of market, product, system and regulatory requirements.

Embedded & mechatronic systems designers typically use hundreds of disconnected systems engineering tools to implement these systems. These legacy and proprietary tools create many different and separate models of the systems that are largely disconnected from each other, with the result that they:

  • Limit cross-discipline collaboration & integration, making it difficult to build a complete systems view that integrates multiple engineering disciplines;
  • Make it impossible to model & simulate the behavior of systems in the context of a complete product, its environment or its interaction with other systems;
  • Limit the ability to reuse system assets across multiple product ranges and options.

What is needed is a fully integrated systems development environment to address these challenges.  An environment that makes it possible to create a high fidelity digital replica of the product and its embedded mechatronic systems to accurately predict and simulate their behavior through a rich 3D experience, just like in real life.

The Dassault Systèmes’ 3DEXPERIENCE platform for Systems Engineering provides such an integrated solution. It delivers an open, extensible & integrated systems engineering environment that shares a common and consistent set of systems models.  It enables all engineering disciplines to create and share virtual twins of real smart products and their systems that make it possible to:

  • Transform all aspects of developing embedded mechatronic systems, from defining and developing systems architectures through to their implementation and validation, all in the context of a virtual twin of the real product through a rich 3D experience.
  • Improve decision-making at the conceptual design stage and reduce the need for physical prototypes through powerful 3D life-like simulation and validation.
  • Collaborate and share information across all stakeholders through a shared common systems definition.
  • Simulate the behavior of complex multi-physic systems in the context of the complete product and its environment.
  • Validate the virtual twin of the product and its sub-systems earlier in the development cycle, saving costs and minimizing errors
  • Reuse systems assets across multiple product ranges and options.
  • Manage the complete product and systems development lifecycle by sharing an open, extendable and common systems data model and repository with all stakeholders.

To learn how this ‘3DEXPERIENCE platform for Systems Engineering’ can transform your embedded and mechatronic systems development process, watch this short webinar now.

Left brain, meet right brain

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

 

By Catherine Bolgar

Three Jigsaw Puzzle Pieces on Table

When Louis Henry Sullivan said, “Form ever follows function,” he was talking about architecture of buildings. But today his 19th-century credo is cited in many other spheres where engineering and design interact, including technology and software.

The lines are blurring, though, so that in the future, engineering and design will be seamlessly integrated.

Good designers are engineers,” says Blade Kotelly, senior lecturer at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, and vice president of design and consumer experience at Jibo Inc., which makes a social robot for the home. At the same time, customers are no longer as wowed by raw technology and they expect an easy, and aesthetic, user experience.

Design runs to the core of things,” he adds. “Large companies realize they’re being outdone by smaller companies that are putting design at the center of their thinking.”

Brainstorming Brainstorm Business People Design ConceptsThis design-thinking approach can be hard for engineers to understand, Mr. Kotelly says: “The beginning of the design process looks like very little is happening, because the designers are trying to get their brains around the problem fully. Before that, they ask whether the problem is even a good one to solve. Then they figure out what’s going to make the solution successful, then they begin the typical design process of research, prototyping, testing, iterating.”

Modular structures or open-source components that can be swapped in or out in a modular way reduce the risk of change, so “you can iterate faster,” he says.

“It’s important to think architecturally about the system—how it breaks out at the top level and the smaller and smaller components—to be able to observe technology as the landscape is changing,” Mr. Kotelly says.

The Internet of Things is making it possible to create systems as never before. However, we’re likely to soon stop talking about the IoT as it becomes the norm.

“It’s like plastics in the 1960s,” says Dirk Knemeyer, a founder of Involution Studios, a Boston-area software design studio. “The distinction of things being plastic was super-important. A couple of decades passed, and plastic things are just things.”

In the same way, “in the future, everything that is digital and many things that are not will be in the Internet of Things,” he says.

Systems require holistic thinking. And that requires integrated teams. “Getting to a successful integrated model that puts design in an appropriate strategic place can be challenging,” Mr. Knemeyer says. “It requires overcoming the biases and preconceptions of stakeholders who are already in place and who often have a skeptical view of design and creative expression as part of business. They also have existing fiefdoms they control, and fear that order might be upset by redesign of people and processes.”

Tearing down management silos provides a new problem-solving methodology and mindset that can augment the traditional perspectives, whether financial, operational or technological.

The engineering perspective is raw capability: what is the range of possibilities technology can do,” Mr. Knemeyer says. “Design says, ‘from these technologies, here are the things that can be done specific to the needs of customers.’”

Addressing customer needs is at the core of high-impact design, or design that brings a meaningful change in increasing revenues and reducing costs, he adds.

Business People Team Teamwork Working Meeting ConceptAt the same time, design thinking doesn’t just create efficiencies, but new ideas, says Mathias Kirchmer, managing director of BPM-D, a West Chester, Pennsylvania, consultancy that helps companies increase performance through cross-functional business and information-technology initiatives.

In the classic approach, a company starts mapping the processes it needs to accomplish, then optimizing so the processes will be carried out efficiently, then writing the actual software, then implementing or installing it. “It’s very inside-out driven,” Dr. Kirchmer says. “In today’s world, that’s a huge problem. First, it’s too slow. We need a faster approach. Second, the inside-out view doesn’t deliver results to drive profitable growth. It doesn’t improve the customer experience sufficiently. It’s good to be more efficient, but that doesn’t make enough of a difference for the client and move the organization to the next performance level.”

Companies compete in just 15% of their processes, he says. The rest is commodity—that is, matching competitors rather than differentiating beyond them. That high-impact 15% requires innovation enabled through design thinking.

Dr. Kirchmer sees four aspects of design thinking:

• empathy to look at high-impact processes from a customer point of view;
• transfer of ideas from unrelated fields to introduce innovation;
• storytelling to communicate the customer journey and intended innovations in a way that will resonate with all the involved teams;
• rapid prototyping to quickly get to the visual design of user interfaces and software development.

The melding of disciplines means that in the future, designers will need to be more knowledgeable about core science or core engineering. “The way science is moving is going to pull all of us into a more quantified scientific environment,” Mr. Knemeyer says.

 

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe, now working as a freelance writer and editor with WSJ. Custom Studios in EMEA. For more from Catherine Bolgar, along with other industry experts, join the Future Realities discussion on LinkedIn.

Photos courtesy of iStock

Game-changing graphene: the amazing properties of a single-atom layer of carbon

By Catherine
Share on LinkedInTweet about this on TwitterShare on FacebookShare on Google+

Written by Catherine Bolgar

 

Step aside, silicon. There’s a new substance that promises to revolutionize medicine, industry, water treatment, electronics and much more. That substance is graphene—a single-atom-thick layer of carbon, a millionth of the width of a human hair.

 

iStock_000039618600_Small

The world’s first two-dimensional material, graphene is potentially plentiful (carbon being the sixth most abundant element in the universe) and cheap. And it possesses amazing qualities and potential uses:

It’s transparent, but conducts…

electricity and heat. Most good conductors are metals such as copper, which is opaque and quick to heat when electricity passes through. But they are prone to hot spots, which form around defects and cause electronic devices to fail. Graphene, by contrast, transfers heat efficiently. “It’s a good alternative to copper,” says Nai-Chang Yeh, professor of physics at California Institute of Technology. Indeed, electronic equipment may in future use graphene-coated copper interconnections to prevent overheating or wear and tear.

It’s light and flexible, but it is…

Hands of scientific showing a piece of graphene with hexagonal molecule.200 time stronger than steel. The carbon-to-carbon bond is very strong, says Rahul Nair, Royal Society fellow at the University of Manchester. In addition, graphene’s carbon atoms are arranged in a tight, uniform honeycomb structure, which is able to bear loads and resist tearing. A membrane of graphene could withstand strong force without breaking, says Dr. Yeh. It may someday be used in aerospace, transportation, construction and defense.

It’s a superlubricant

“If you take one piece of flawless graphene and put it on top of another, and slide one against the other, there’s almost no friction,” says Dr. Yeh. Coating machines parts with graphene could minimize unwanted friction, providing industry with countless applications.

It’s impermeable…

Graphene’s honeycomb structure is too tight for any molecules to squeeze through. “If you have graphene on metal, it’s perfect protection, because other molecules in the air cannot penetrate that honeycomb hole,” says Dr. Yeh. Indeed, Dr. Nair has dissolved graphene oxide in water to create a paint-like film that can protect any surface from corrosion. This graphene paint could be used by the oil and gas industry to protect equipment against saltwater, or by pharmaceutical and food packaging firms to block out oxygen and moisture, thereby extending their products’ shelf life, says Dr. Nair.

…but can also be permeable. A single-micrometer-thick film containing thousands of layers of graphene oxide has nanosize capillaries between its layers, which expand when exposed to water. However, those capillaries don’t expand when exposed to other substances. This is unusual because a water molecule is bigger than a helium or hydrogen molecule. However, water behaves differently when it’s within the confined space of a nanometer, moving rapidly through the graphene oxide nanocapillary. By contrast, salt that is dissolved in the water is blocked. One use for this, says Dr. Nair, could be water or molecular filtration.

It’s a chemical contradiction

A sheet of graphene is inert, but its edges are chemically reactive, says Dr. Yeh. A little graphene flake has a large perimeter relative to its area, allowing for more reaction. These flakes could be used to remove toxins from water.

It can be magnetic

MagnetThe zigzag-shaped edges of graphene have magnetic properties.“People imagine that you will be able to use graphene sheets as a magnet that can pick up iron at room temperature,” explains Dr. Yeh. That something all-carbon can be magnetic is “amazing,” she adds. Coupled with its electric conductivity, graphene’s magnetic properties may open up all sorts of applications in spintronics and semiconductors.

Graphene’s potential may be extraordinary, but how easy is it to create? It was first isolated in 2004 at Manchester University by Andre Geim and Konstantin Novoselov who won the 2010 physics Nobel Prize for their work. They arrived at graphene by using adhesive tape to peel off ever-thinner layers from graphite, a process subject to continual improvement. In one common method, copper is heated to 1,000 degrees Celsius, near its melting point. Methane gas, comprising carbon and hydrogen molecules, is then added, and the copper rips off the bond between the two molecules, dissolving the carbon into the copper and letting the carbon “grow” on the surface, Dr. Yeh explains. The result is a sheet of graphene.

David Boyd and Wei-Hsiang Lin, working with Dr. Yeh at Caltech, however, found that what counts most is not heat but clean copper.  Copper oxidizes quickly in air and so has a thin layer of carbon oxide on its surface. They use hydrogen plasma, which has “gas radicals that behave like erasers and clean up the surface of the copper,” Dr. Yeh explains. The process allows graphene to grow in five minutes at room temperature.

Most importantly, this method could be scaled up to produce industrial amounts of high-quality graphene—a huge step towards realizing its true potential.

Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. 

For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion.

 

Photos courtesy of iStock



Page 1 of 2612345...1020...Last »