Smarter Solutions for Smarter Ideation

By Estelle

An Interview with Anne Asensio, VP Design Experience at Dassault Systèmes

This Article has been written by Teshia Treuhaft and originally appeared at Core 77


While the terms ‘internet of things,’ ‘smart objects’ and ‘connected devices’ seem to be regularly splashed across the pages of newspapers, design briefs, crowdfunding campaigns and conference topics—relatively little is discussed about what tools designers need in order to design smart devices.

Some startups and corporate departments are beginning to understand how the inclusion of technology in our everyday lives is changing us. With this realization comes changing demands for product teams looking to innovate. This usually includes designers working alongside engineers and software developers, oftentimes with a new set of tools to match. Among the tools already available to designers, many of the emerging industry standards have come from Dassault Systèmes. Dassault Systèmes has long recognized the cross disciplinary needs of designers and responded with several solutions, allowing for the creation of holistic design experiences, not just products.

As product teams become more interdisciplinary, the process for creating products has expanded to include engineers, scientists, developers and many more key players. As the requirements of designing change—so does the process of design thinking, adapting to what Dassault Systèmes has named ‘Social Ideation.’ Social Ideation is the method by which the iterative process is expanded beyond just including designers. Each phase of ideation can be visualized for not just the design-savvy, but for all members of an interdisciplinary team.

To make tools for social ideation not only work, but work fast, precise and for team members with different competencies is a big task. To understand what is needed, we asked someone who has been linking design methodologies and fostering collaboration in multidisciplinary teams for years, Anne Asensio. Asensio, came from General Motors and Renault to join Dassault Systèmes in 2007 as Vice President of Design Experience. She sat down to share her view on the need for social ideation across disciplines and the new responsibilities of designers in the next generations.

Anne Asensio, VP Design Experience at Dassault Systèmes

Core77: Is the consumer expectation for experience over product a recent occurrence?

Anne Asensio: This is something we have seen coming from quite some time. People have always been interested in this notion of experience because it’s part of our lives, but now when we are talking about the experience it’s because I think that we have passed the time for just producing products for functional aspects of life in the new economy. We must begin looking at a much higher level of expectation.

The digital effect is that everything is now contextualized. Digital devices with the capacity to be customized and configured can now become a little personal space that you can immerse yourself into anytime you want. It delivers this notion of being part of that moment and that’s a different expectation in terms of experience. What we are seeing is an accelerated view of the natural evolution of human experience due to the digital devices that are transforming our lives.

What kinds of tools are necessary to design these experiences?

What I am personally interested in is design experience. You might ask what the difference is between design experience and experience design. In experience design we have seen an incredible expansion of design methodologies and practices in the area of digital design. The act of just designing through screen-based software is necessary for designers to do the work they needed to do—that is, to humanize the relationship between man and technology.

But I believe that the world of design is not just to help humanize the evolution of technology—I believe we have a particular aim, which is to question where we are going on a broader level, to create designed experiences. To do this we have to bring meaning and question the type of experience we are providing. Especially now that technology gives us the total liberty and expertise to do anything, bringing with it a high level of responsibility.

“We have seen an incredible expansion of design methodologies and practices in the area of digital design” says Asensio.

So has the designer’s role in multidisciplinary teams changed?

Designers have always been serving this function: acting as a contributor among a multidisciplinary team while bringing their own perspective. But today, designers help everyone visualize what they are doing collaboratively in order to make decisions—that is quite new. What the new tools are doing is enabling two aspects: the capability to not only design, but also to represent and the ability to see what others are doing in order to help them reduce risk and uncertainty.

This is absolutely critical when it comes to making decisions about new products because it helps people embrace disruptive innovation—not because they are coming up with better ideas—but by allowing for synthesis. Now you can combine the capabilities of teams into a physical or virtual medium and share progress throughout the whole process. This model can be continuously transformed—it can keep being changed. You have the perfect subject to apply the typical design methodology of iterations—test, fail, change, and do it again.

What are the big challenges facing multidisciplinary teams?

I don’t know if I would say challenges or opportunities. The fact is, what you see is a convergence of digital technology and a convergence of very interesting capacities that are coming from different industries. For Dassault Systèmes, we come from the formalization of the product and we extend it with physics, simulation all the way to imaginaries and meanings. to reach the point where we can embrace more team members in the process and get something very complex to be seen, interacted with and visualized.

What is really key is that wherever you come from, whatever meaning you are looking for, we want to allow anyone the ability to deliver their vision of the future. That is very important because right now, team members can be accused of not being transparent, and I can see a way in which everyone will have a stake in the way we are designing the world.

“We are not at a moment where desginers need to return to their capacity to project ideas, both imaginary and visionary” says Asensio. 

You mean they will have a stake in it because anyone can have the tools?

All of those capacities that were designed and developed in a particular area of application—be it manufacturing, design, science, entertainment etc.—are now merging. That convergence, we see today in the Internet of Things. All those aspects are just something we are visualizing today—it’s a way to see what’s happening, and react.

I believe that today we are looking at something more forward thinking, more visionary. Basically asking: we have these capabilities, but where do we start? How should we be innovating and why? What would be the best way of innovating, embracing some questions that are more on the social and not just the technical side. Answers are not going to only be found on the technical side.

What abilities does the next generation of young designers need to help find those answers?

We were designers before the industrial era. Everyone was a craftsman or artisan with the ability to make a beautiful, signature object. The industrial era then put the designers into a different situation—they must humanize. Some designers were able to push to the level of questioning, in a critical manner, how the objects produced by the industry were affecting our society, our lives, our ethical approach of living our condition as humans. Now that era is done. We are now at a moment where designers need to return to their capacity to project ideas both imaginary and visionary.

That leads me to believe that young designers need to not only establish themselves in their role of humanizing technology but critically question what is happening. It’s no longer what you’re going to be doing—but what you’re going to be. Period.

Thanks to Anne Asensio for speaking with us. To read more about Dassault Systèmes Solutions and Social Ideation & Creative Design, check out their website

3DEXPERIENCE & V6 Innovation Stories from Bell Helicopter & Yong Dang E&P

By Matthew

How do they do it? Well, we in ENOVIA at DS can tell you about it until we are orange, er, I mean blue in the face. But what is better than actually hearing all about the how and why from the sources?  Check these out!

Bell Helicopter:

Icon of the aviation industry, Bell Helicopter was the first company to obtain certification for a commercial helicopter,and has been a mainstay of the US defense industry since World War II.

With ENOVIA for our entire enterprise, the information around the aircraft is available and visible to everyone that needs that data, not only the engineers, which is the way it was in the past.  And because we have taken ENOVIA, and it is the master for most of the product data and it sends that data to CAMS and SAP as the slave systems, we are seeing an increase in quality of what is communicated from engineering to the shop floor

– Jeff Cloud, manager of systems engineering and engineering operations at Bell Helicopter.

YouTube Preview Image

Download the case study .pdf file in our 3DSwYm community HERE.

Yong Dang E&P:

DONG YANG E&P, manufacturer of switch mode power suppliers, chargers, DC converters and solar inverters, launched its global expansion into China, Slovakia, Romania and Vietnam.

To achieve their global leadership goal, they needed to improve collaboration between their product development teams and improve product quality.

To do this, they chose Dassault Systèmes’ 3DEXPERIENCE platform and its HT body industry solution experience comprised of ENOVIA apps for real-time collaboration globally.

YouTube Preview Image

Download the case study .pdf file in our 3DSwYm community HERE.


Matthew J. Hall

Matthew J. Hall

Matthew Hall is the ENOVIA User Advocacy & Social EXPERIENCE Specialist.  You can find him on Twitter at @mjhall. Connect with ENOVIA at @3DSENOVIA

3D Printing Takes Off

By Catherine

Written by Catherine Bolgar


Additive manufacturing (AM), also known as 3D printing, has evolved beyond its plastic beginnings. The medical industry uses the technique with living cells to create tissues and, perhaps one day, organs. In aerospace, AM produces stronger and lighter components, while reducing waste of costly high-tech metal alloys. The U.S. Federal Aviation Administration in April certified the first 3D-printed jet engine part, a house for a compressor inlet temperature sensor called T25, made by GE Aviation.

Conventional manufacturing involves casting a solid part, then milling, boring, sawing, drilling or planing it into shape or hollowing it out, like a sculptor with a block of marble—but using precision machines.

By contrast, AM deposits the raw material—such as aluminum, nickel alloys, titanium or stainless steel—in powder form, 20 to 40 microns thick, which is then melted with a laser according to a 3D computer model. AM then uses several binding techniques, including selective laser melting, direct metal laser sintering and laser deposition technology.

This process has three major advantages over traditional manufacturing: speed, cost and design.

Speed: Time is saved from the moment the design leaves the drawing board.
“To come up with a prototype for any component may take a year: to make castings, get molds in place, then manufacturing, then the assembles required,” says Joseph Markiewicz, plant manager at General Electric Aviation’s $50 million additive manufacturing plant in Auburn, Ala.

With additive, you go from designing a prototype in a 3D model, then test it out and redesign almost on the fly. It’s rapid design validation.”

The supply chain also is shorter. Raw material procurement for conventional manufacturing requires six to 12 months lead time, says Thomas Dautl, head of production technologies at MTU Aero Engines AG in Munich. Then machining of the components takes time, but “if you build your part directly out of powder, you have much shorter lead times.”

iStock_000041686948_SmallFinally, the manufacturing process itself is faster. MTU uses AM to make borescope bosses, which form part of the turbine case on the PW1100G-JM engine for the Airbus 320neo aircraft. More than 10 borescope bosses can be made simultaneously, Mr. Dautl says, and with fewer workers than in conventional manufacturing where workers guide the casting or milling process for each piece produced.

Cost: “What’s really key about additive manufacturing is it’s really efficient from the perspective of materials consumption,” Mr. Markiewicz says. “In additive, you have less waste. Before, you had a piece of metal that you ground down. Now you build up.” With no pile of excess raw material at the end of the process, AM can generate significant savings.

Less wastage is vital, because “you have to have more than a 10%-15% cost reduction otherwise you can’t do it,” notes Mr. Dautl. “There are a lot of other costs if you change to another technique, so you must have a significant cost reduction overall” to justify the switch.

There are also savings to be gained from greater simplicity. GE Aviation uses AM to make fuel nozzles for the new LEAP jet engines manufactured by CFM, a joint venture between GE Aviation and Snecma. Whereas a traditional nozzle comprises 20 different, precision-made components, all produced by traditional methods, and then welded or brazed together, the AM fuel nozzle consists of a single piece.

“There’s significant simplification of the process,” Mr. Markiewicz says, “and better consistency because there are fewer points of variation thanks to having fewer pieces.”

In addition, the AM nozzles are not only more durable, they also weigh 25% less than traditionally produced versions. That is important because “weight reduction is significant for anything in the aviation world,” Mr. Markiewicz says, and each engine has 19 fuel nozzles. The new nozzles help aircraft cut fuel consumption 15%.

Design: As the new fuel nozzle illustrates, AM can produce designs that traditional methods cannot. AM allows “more organic design and organic structure,” Mr. Markiewicz says.

In nature, there are no right angles. Nature finds best the angles for tensile strength. Additive can do this. It has removed the handcuffs that design engineers have typically been held to. Now they can design for hollow internal passageways that are stronger and lighter weight. It opens up a new canvas for designers.”

iStock_000045466576_SmallIndeed, future design departments will need to integrate the complex geometries possible with AM, as well as adjust to new possibilities for lightweight design, MTU’s Mr. Dautl says. Evolving computer-aided design (CAD) software will be able to produce complex designs for 3D printed parts that are hollow for lighter weight yet stronger than what could be made traditionally. CAD programs also will be able to work out loads and constraints for new materials that can be 3D printed.

“It’s a new way of thinking for engineers and manufacturing organizations: producing a 3D model and printing it,” Mr. Markiewicz says. “You’re eliminating the middle steps and creating a seamless flow between design and manufacturing.”



Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion.

Photos courtesy of iStock

Page 1 of 3123