3D Printing Takes Off

By Catherine

Written by Catherine Bolgar


Additive manufacturing (AM), also known as 3D printing, has evolved beyond its plastic beginnings. The medical industry uses the technique with living cells to create tissues and, perhaps one day, organs. In aerospace, AM produces stronger and lighter components, while reducing waste of costly high-tech metal alloys. The U.S. Federal Aviation Administration in April certified the first 3D-printed jet engine part, a house for a compressor inlet temperature sensor called T25, made by GE Aviation.

Conventional manufacturing involves casting a solid part, then milling, boring, sawing, drilling or planing it into shape or hollowing it out, like a sculptor with a block of marble—but using precision machines.

By contrast, AM deposits the raw material—such as aluminum, nickel alloys, titanium or stainless steel—in powder form, 20 to 40 microns thick, which is then melted with a laser according to a 3D computer model. AM then uses several binding techniques, including selective laser melting, direct metal laser sintering and laser deposition technology.

This process has three major advantages over traditional manufacturing: speed, cost and design.

Speed: Time is saved from the moment the design leaves the drawing board.
“To come up with a prototype for any component may take a year: to make castings, get molds in place, then manufacturing, then the assembles required,” says Joseph Markiewicz, plant manager at General Electric Aviation’s $50 million additive manufacturing plant in Auburn, Ala.

With additive, you go from designing a prototype in a 3D model, then test it out and redesign almost on the fly. It’s rapid design validation.”

The supply chain also is shorter. Raw material procurement for conventional manufacturing requires six to 12 months lead time, says Thomas Dautl, head of production technologies at MTU Aero Engines AG in Munich. Then machining of the components takes time, but “if you build your part directly out of powder, you have much shorter lead times.”

iStock_000041686948_SmallFinally, the manufacturing process itself is faster. MTU uses AM to make borescope bosses, which form part of the turbine case on the PW1100G-JM engine for the Airbus 320neo aircraft. More than 10 borescope bosses can be made simultaneously, Mr. Dautl says, and with fewer workers than in conventional manufacturing where workers guide the casting or milling process for each piece produced.

Cost: “What’s really key about additive manufacturing is it’s really efficient from the perspective of materials consumption,” Mr. Markiewicz says. “In additive, you have less waste. Before, you had a piece of metal that you ground down. Now you build up.” With no pile of excess raw material at the end of the process, AM can generate significant savings.

Less wastage is vital, because “you have to have more than a 10%-15% cost reduction otherwise you can’t do it,” notes Mr. Dautl. “There are a lot of other costs if you change to another technique, so you must have a significant cost reduction overall” to justify the switch.

There are also savings to be gained from greater simplicity. GE Aviation uses AM to make fuel nozzles for the new LEAP jet engines manufactured by CFM, a joint venture between GE Aviation and Snecma. Whereas a traditional nozzle comprises 20 different, precision-made components, all produced by traditional methods, and then welded or brazed together, the AM fuel nozzle consists of a single piece.

“There’s significant simplification of the process,” Mr. Markiewicz says, “and better consistency because there are fewer points of variation thanks to having fewer pieces.”

In addition, the AM nozzles are not only more durable, they also weigh 25% less than traditionally produced versions. That is important because “weight reduction is significant for anything in the aviation world,” Mr. Markiewicz says, and each engine has 19 fuel nozzles. The new nozzles help aircraft cut fuel consumption 15%.

Design: As the new fuel nozzle illustrates, AM can produce designs that traditional methods cannot. AM allows “more organic design and organic structure,” Mr. Markiewicz says.

In nature, there are no right angles. Nature finds best the angles for tensile strength. Additive can do this. It has removed the handcuffs that design engineers have typically been held to. Now they can design for hollow internal passageways that are stronger and lighter weight. It opens up a new canvas for designers.”

iStock_000045466576_SmallIndeed, future design departments will need to integrate the complex geometries possible with AM, as well as adjust to new possibilities for lightweight design, MTU’s Mr. Dautl says. Evolving computer-aided design (CAD) software will be able to produce complex designs for 3D printed parts that are hollow for lighter weight yet stronger than what could be made traditionally. CAD programs also will be able to work out loads and constraints for new materials that can be 3D printed.

“It’s a new way of thinking for engineers and manufacturing organizations: producing a 3D model and printing it,” Mr. Markiewicz says. “You’re eliminating the middle steps and creating a seamless flow between design and manufacturing.”



Catherine Bolgar is a former managing editor of The Wall Street Journal Europe. For more from Catherine Bolgar, contributors from the Economist Intelligence Unit along with industry experts, join the Future Realities discussion.

Photos courtesy of iStock

[PART 2] DELMIA Helps the Aerospace Industry Meet the Challenges of Composite Manufacturing

By Christian

Composite wing flap at Airbus
A composite wing flap in Filton, Bristol.
Source: Department for Business, Innovation & Skills, UK.

I’m Christian Chaplais, Senior Manager of R&D DELMIA Enterprise Intelligence Applications. Welcome to the  second blog  of a two-part series on how  Operational Intelligence is helping the Aerospace & Defense Industry.

Finding a Way Around the Complexity of Composite Manufacturing

Many composite parts manufacturers have been exposed to quality issues for years. Some have used classic approaches such as simple statistics, advanced statistics or optimization consulting services to find an answer, but came up short.

So, the question remains. How do you solve composite manufacturing issues without going through all the complexities? There is a way to discover and apply an empirical (data-based) model without the complications in just a few weeks: Operations Intelligence (O/I).

With (O/I) Process Rules Discovery, for example, quality engineers or process and product experts can discover patterns (or rules) explaining whether results have been satisfactory or not. This can be done with a limited number of observations, which keeps down costs, in a ramp-up study.

Process and product experts can also understand the model with Process Rules Discovery, change it by editing the rules and immediately see the impact on the rule KPIs (Key Performance Indicators) based on facts (data).

Here’s a sample rule discovered by Process Rules Discovery:

sample rule

The rule can be interpreted as:

When the product is in the autoclave for an extended period of time (cure cycle time is high)…
…and the binding strength of the fiber is low,
…and fibers have been aging sufficiently,
then the quality is good.

Let’s take another O/I example. With Operations Advisor, shop floor workers can assess risk and take preventive or corrective action in real-time. Operations Advisor recommends values for actionable parameters (settings) without requiring any change to the process specifications or investment in new material.

operations advisor

[Operations Advisor risk assessment and proposed settings ranges (in green)]

Adopting Operations Intelligence

The DELMIA Operations Intelligence solution for Composites has been widely adopted by the Aerospace & Defense Industry from both OEMs and tier-one suppliers.

For several years, one company has been faced with an important and repetitive nonconformance issue (delamination) on the composite leading edge of wings for an aircraft manufacturer. On this family of products, the reject rate could reach 13% and the rework rate 28%. There were delays (up to 6 months of manufacturing backlog), extra internal costs, a loss of confidence from the customer and internal frustration. Multiple quality tasks including process audits, investigating new processes, SPC analysis, inspections of raw material, etc. did not solve the problem.

They then decided to use Operations Intelligence to analyze two years of production. In less than six weeks, two influent parameters, unsuspected until now, were identified (the fluidity of the resin and the time during which the part is kept under vacuum), as well as the recommended lower and higher limits for these parameters. By applying the rules discovered, they managed to instantly reduce the scrap rate to zero and the rework rate to 1%, removing any backlog shortly after.

I’d like to hear your experiences with Composite Manufacturing? What was the outcome?

Continue the technical conversation. Join the DELMIA Enterprise Intelligence Community: https://swym.3ds.com/#community:453


[PART 1] DELMIA Helps the Aerospace Industry Meet the Challenges of Composite Manufacturing

By Christian

Hi, I’m Christian Chaplais, Senior Manager of R&D DELMIA Operations Intelligence Applications. This blog is the first of a two-part series on how  Operational Intelligence is helping the Aerospace & Defense Industry.

The Growing Footprint of Composite Materials in the Aerospace and Defense Industry

It’s an interesting concept when one thinks of composite materials. By now, you’re most likely somewhat familiar with—and may have heard about– the benefits that these combined materials, such as carbon fibers, can result in. Composite materials have become wide-spread in civil aircrafts after being used for years in the defense industry. And why not? The benefits are huge. Composite materials allow producing lightweight structures which in turn reduce fuel bills and emissions.

According to a 2014 report, Aerospace & Defense applications are now the largest consumers of carbon fiber (30% of demand) and generate 50% of global carbon fiber revenues.

Industry analysts expect an annual growth of between 8 and 13% for carbon composites revenue in the passenger aircraft segment and between 6 and 12% in the defense segment.

Development of carbon composite revenues in US$ million in A&D

View source. Amounts in US $ millions.

New Processes, New Issues

There is a variety of processes used to manufacture composite materials:

CRP market share in US$ million by manufaturing process (2013)

View source. 2013 figures.

Prepregs, which account for 37%, are reinforcement materials that are pre-impregnated (hence the term “prepreg”) with a resin. The prepregs are laid up by hand or machine onto a mold surface, vacuum bagged and then heated to typically 120-180°C /248-356°F.

Autoclaves and materials have a high cost, but because of the quality and lightness of the material obtained, prepeg layup with autoclave has been until now the primary choice for the Aerospace and Defense industry.

However, new materials bring new challenges. And one major challenge is the unexpected occurrence of defects during the manufacturing of these costly composite parts.

The prepregs require storage at a controlled temperature and present certain inherent problems (variability of the raw material, variability of the processing methods used for the prepreg rolls, sensitivity of the raw material to the prevailing temperature and humidity rate in the production environment…)

As a result, up to 20% of the parts may exhibit defects such as porosity and delamination which, albeit invisible to the naked eye, are nonetheless present in the mass. These faults weaken the resistance of a part, and when there are too many such faults, the part is discarded.


Zoom on a delamination issue at a leading edge of a wing

DELMIA Operations Intelligence offers a way round the complexity of composite manufacturing.
Find out how in my next blog post, Part 2 of “The Growing Footprint of Composite Materials in the Aerospace and Defense Industry.”

If you would like to continue the technical conversation on Operations Intelligence, go where all the experts are. Join the conversation at the DELMIA Enterprise Intelligence Community here: https://swym.3ds.com/#community:453

Page 1 of 3123